Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384692778> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4384692778 endingPage "78" @default.
- W4384692778 startingPage "71" @default.
- W4384692778 abstract "The paper explores the significance of error prediction in software development and discusses the use of deep learning approaches to address this task. It emphasizes the need for proactive error prevention and the limitations of reactive bug- fixing strategies. The study examines various deep learning models, including Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and Graph Convolutional Networks (GCNs), and their applicability in error prediction. The conclusions drawn from the study highlight the strengths of each model. RNNs are effective in capturing temporal dependencies and sequential patterns in error data, enabling the analysis of error progression over time. CNNs excel at extracting relevant features and local patterns from software artefacts by treating them as image-like data. GCNs leverage the graph structure of software artefacts to capture structural dependencies and interactions between code elements. To leverage the benefits of both temporal and structural information, the study proposes a hybrid model that combines RNNs with GCNs for error prediction. This hybrid model harnesses the power of deep learning to identify patterns and model relationships, offering promising results in accurate error forecasting and prevention in software development. The adoption of proactive error prediction techniques facilitated by deep learning has the potential to enhance software quality, resource efficiency, and user experience. By proactively identifying and addressing errors, development teams can reduce the impact of issues before they manifest, leading to improved software reliability and customer satisfaction. Overall, the paper highlights the importance of error prediction in software development and demonstrates the potential of deep learning approaches to enhance error prevention strategies." @default.
- W4384692778 created "2023-07-20" @default.
- W4384692778 creator A5019841907 @default.
- W4384692778 creator A5092493306 @default.
- W4384692778 date "2023-07-18" @default.
- W4384692778 modified "2023-10-01" @default.
- W4384692778 title "Improving Software Quality through Deep Learning: A Comprehensive Literature Study on Error Prediction in Software Development" @default.
- W4384692778 cites W2021688474 @default.
- W4384692778 cites W2026750231 @default.
- W4384692778 cites W2059635439 @default.
- W4384692778 cites W2151666086 @default.
- W4384692778 cites W2787986668 @default.
- W4384692778 cites W2806948703 @default.
- W4384692778 cites W3212106560 @default.
- W4384692778 cites W4221059698 @default.
- W4384692778 doi "https://doi.org/10.48175/ijarsct-12111" @default.
- W4384692778 hasPublicationYear "2023" @default.
- W4384692778 type Work @default.
- W4384692778 citedByCount "0" @default.
- W4384692778 crossrefType "journal-article" @default.
- W4384692778 hasAuthorship W4384692778A5019841907 @default.
- W4384692778 hasAuthorship W4384692778A5092493306 @default.
- W4384692778 hasBestOaLocation W43846927781 @default.
- W4384692778 hasConcept C108583219 @default.
- W4384692778 hasConcept C117447612 @default.
- W4384692778 hasConcept C119857082 @default.
- W4384692778 hasConcept C124101348 @default.
- W4384692778 hasConcept C147168706 @default.
- W4384692778 hasConcept C153083717 @default.
- W4384692778 hasConcept C154945302 @default.
- W4384692778 hasConcept C199360897 @default.
- W4384692778 hasConcept C2522767166 @default.
- W4384692778 hasConcept C2777904410 @default.
- W4384692778 hasConcept C41008148 @default.
- W4384692778 hasConcept C50644808 @default.
- W4384692778 hasConcept C529173508 @default.
- W4384692778 hasConcept C81363708 @default.
- W4384692778 hasConceptScore W4384692778C108583219 @default.
- W4384692778 hasConceptScore W4384692778C117447612 @default.
- W4384692778 hasConceptScore W4384692778C119857082 @default.
- W4384692778 hasConceptScore W4384692778C124101348 @default.
- W4384692778 hasConceptScore W4384692778C147168706 @default.
- W4384692778 hasConceptScore W4384692778C153083717 @default.
- W4384692778 hasConceptScore W4384692778C154945302 @default.
- W4384692778 hasConceptScore W4384692778C199360897 @default.
- W4384692778 hasConceptScore W4384692778C2522767166 @default.
- W4384692778 hasConceptScore W4384692778C2777904410 @default.
- W4384692778 hasConceptScore W4384692778C41008148 @default.
- W4384692778 hasConceptScore W4384692778C50644808 @default.
- W4384692778 hasConceptScore W4384692778C529173508 @default.
- W4384692778 hasConceptScore W4384692778C81363708 @default.
- W4384692778 hasLocation W43846927781 @default.
- W4384692778 hasOpenAccess W4384692778 @default.
- W4384692778 hasPrimaryLocation W43846927781 @default.
- W4384692778 hasRelatedWork W2337926734 @default.
- W4384692778 hasRelatedWork W2793022090 @default.
- W4384692778 hasRelatedWork W2919358988 @default.
- W4384692778 hasRelatedWork W3021430260 @default.
- W4384692778 hasRelatedWork W3136076031 @default.
- W4384692778 hasRelatedWork W4298168912 @default.
- W4384692778 hasRelatedWork W4317242789 @default.
- W4384692778 hasRelatedWork W4320802194 @default.
- W4384692778 hasRelatedWork W4366224123 @default.
- W4384692778 hasRelatedWork W4381487685 @default.
- W4384692778 isParatext "false" @default.
- W4384692778 isRetracted "false" @default.
- W4384692778 workType "article" @default.