Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384694411> ?p ?o ?g. }
- W4384694411 endingPage "e45000" @default.
- W4384694411 startingPage "e45000" @default.
- W4384694411 abstract "Background The use of patient health and treatment information captured in structured and unstructured formats in computerized electronic health record (EHR) repositories could potentially augment the detection of safety signals for drug products regulated by the US Food and Drug Administration (FDA). Natural language processing and other artificial intelligence (AI) techniques provide novel methodologies that could be leveraged to extract clinically useful information from EHR resources. Objective Our aim is to develop a novel AI-enabled software prototype to identify adverse drug event (ADE) safety signals from free-text discharge summaries in EHRs to enhance opioid drug safety and research activities at the FDA. Methods We developed a prototype for web-based software that leverages keyword and trigger-phrase searching with rule-based algorithms and deep learning to extract candidate ADEs for specific opioid drugs from discharge summaries in the Medical Information Mart for Intensive Care III (MIMIC III) database. The prototype uses MedSpacy components to identify relevant sections of discharge summaries and a pretrained natural language processing (NLP) model, Spark NLP for Healthcare, for named entity recognition. Fifteen FDA staff members provided feedback on the prototype’s features and functionalities. Results Using the prototype, we were able to identify known, labeled, opioid-related adverse drug reactions from text in EHRs. The AI-enabled model achieved accuracy, recall, precision, and F1-scores of 0.66, 0.69, 0.64, and 0.67, respectively. FDA participants assessed the prototype as highly desirable in user satisfaction, visualizations, and in the potential to support drug safety signal detection for opioid drugs from EHR data while saving time and manual effort. Actionable design recommendations included (1) enlarging the tabs and visualizations; (2) enabling more flexibility and customizations to fit end users’ individual needs; (3) providing additional instructional resources; (4) adding multiple graph export functionality; and (5) adding project summaries. Conclusions The novel prototype uses innovative AI-based techniques to automate searching for, extracting, and analyzing clinically useful information captured in unstructured text in EHRs. It increases efficiency in harnessing real-world data for opioid drug safety and increases the usability of the data to support regulatory review while decreasing the manual research burden." @default.
- W4384694411 created "2023-07-20" @default.
- W4384694411 creator A5013278628 @default.
- W4384694411 creator A5027985788 @default.
- W4384694411 creator A5039147871 @default.
- W4384694411 creator A5041792713 @default.
- W4384694411 creator A5053459764 @default.
- W4384694411 creator A5065319915 @default.
- W4384694411 creator A5079877025 @default.
- W4384694411 creator A5084230840 @default.
- W4384694411 creator A5015493307 @default.
- W4384694411 date "2023-07-18" @default.
- W4384694411 modified "2023-10-10" @default.
- W4384694411 title "Artificial Intelligence–Enabled Software Prototype to Inform Opioid Pharmacovigilance From Electronic Health Records: Development and Usability Study" @default.
- W4384694411 cites W1504514942 @default.
- W4384694411 cites W1603549193 @default.
- W4384694411 cites W1700188159 @default.
- W4384694411 cites W1871067837 @default.
- W4384694411 cites W192495716 @default.
- W4384694411 cites W1964625659 @default.
- W4384694411 cites W2024490135 @default.
- W4384694411 cites W2085074082 @default.
- W4384694411 cites W2104374197 @default.
- W4384694411 cites W2122402213 @default.
- W4384694411 cites W2146089916 @default.
- W4384694411 cites W2155655790 @default.
- W4384694411 cites W2155964536 @default.
- W4384694411 cites W2157374838 @default.
- W4384694411 cites W2164105883 @default.
- W4384694411 cites W2164995818 @default.
- W4384694411 cites W2283041611 @default.
- W4384694411 cites W2396881363 @default.
- W4384694411 cites W2608364534 @default.
- W4384694411 cites W2651948199 @default.
- W4384694411 cites W2766933667 @default.
- W4384694411 cites W2908840510 @default.
- W4384694411 cites W2914747183 @default.
- W4384694411 cites W2946729238 @default.
- W4384694411 cites W2979250794 @default.
- W4384694411 cites W3106224367 @default.
- W4384694411 cites W3169284847 @default.
- W4384694411 cites W3184520187 @default.
- W4384694411 cites W4236314948 @default.
- W4384694411 cites W4286008148 @default.
- W4384694411 cites W4286250847 @default.
- W4384694411 cites W4297253404 @default.
- W4384694411 cites W4312220150 @default.
- W4384694411 cites W4313460860 @default.
- W4384694411 doi "https://doi.org/10.2196/45000" @default.
- W4384694411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37771410" @default.
- W4384694411 hasPublicationYear "2023" @default.
- W4384694411 type Work @default.
- W4384694411 citedByCount "1" @default.
- W4384694411 crossrefType "journal-article" @default.
- W4384694411 hasAuthorship W4384694411A5013278628 @default.
- W4384694411 hasAuthorship W4384694411A5015493307 @default.
- W4384694411 hasAuthorship W4384694411A5027985788 @default.
- W4384694411 hasAuthorship W4384694411A5039147871 @default.
- W4384694411 hasAuthorship W4384694411A5041792713 @default.
- W4384694411 hasAuthorship W4384694411A5053459764 @default.
- W4384694411 hasAuthorship W4384694411A5065319915 @default.
- W4384694411 hasAuthorship W4384694411A5079877025 @default.
- W4384694411 hasAuthorship W4384694411A5084230840 @default.
- W4384694411 hasBestOaLocation W43846944111 @default.
- W4384694411 hasConcept C107457646 @default.
- W4384694411 hasConcept C119857082 @default.
- W4384694411 hasConcept C127413603 @default.
- W4384694411 hasConcept C154945302 @default.
- W4384694411 hasConcept C160735492 @default.
- W4384694411 hasConcept C162324750 @default.
- W4384694411 hasConcept C170130773 @default.
- W4384694411 hasConcept C197934379 @default.
- W4384694411 hasConcept C199360897 @default.
- W4384694411 hasConcept C201995342 @default.
- W4384694411 hasConcept C204321447 @default.
- W4384694411 hasConcept C2777904410 @default.
- W4384694411 hasConcept C2779135771 @default.
- W4384694411 hasConcept C2779328685 @default.
- W4384694411 hasConcept C2780451532 @default.
- W4384694411 hasConcept C41008148 @default.
- W4384694411 hasConcept C50522688 @default.
- W4384694411 hasConcept C57658597 @default.
- W4384694411 hasConcept C71924100 @default.
- W4384694411 hasConcept C98274493 @default.
- W4384694411 hasConceptScore W4384694411C107457646 @default.
- W4384694411 hasConceptScore W4384694411C119857082 @default.
- W4384694411 hasConceptScore W4384694411C127413603 @default.
- W4384694411 hasConceptScore W4384694411C154945302 @default.
- W4384694411 hasConceptScore W4384694411C160735492 @default.
- W4384694411 hasConceptScore W4384694411C162324750 @default.
- W4384694411 hasConceptScore W4384694411C170130773 @default.
- W4384694411 hasConceptScore W4384694411C197934379 @default.
- W4384694411 hasConceptScore W4384694411C199360897 @default.
- W4384694411 hasConceptScore W4384694411C201995342 @default.
- W4384694411 hasConceptScore W4384694411C204321447 @default.
- W4384694411 hasConceptScore W4384694411C2777904410 @default.
- W4384694411 hasConceptScore W4384694411C2779135771 @default.
- W4384694411 hasConceptScore W4384694411C2779328685 @default.