Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384694679> ?p ?o ?g. }
- W4384694679 endingPage "8266" @default.
- W4384694679 startingPage "8266" @default.
- W4384694679 abstract "For decades, humans have been confronted with numerous pest species, with the desert locust being one of the most damaging and having the greatest socio-economic impact. Trying to predict the occurrence of such pests is often complicated by the small number of records and observations in databases. This paper proposes a methodology based on a combination of classification and regression techniques to address not only the problem of locust sightings prediction, but also the number of locust individuals that may be expected. For this purpose, we apply different machine learning (ML) and related techniques, such as linear regression, Support Vector Machines, decision trees, random forests and neural networks. The considered ML algorithms are evaluated in three different scenarios in Western Africa, mainly Mauritania, and for the elaboration of the forecasting process, a number of meteorological variables obtained from the ERA5 reanalysis data are used as input variables for the classification–regression machines. The results obtained show good performance in terms of classification (appearance or not of desert locust), and acceptable regression results in terms of predicting the number of locusts, a harder problem due to the small number of samples available. We observed that the RF algorithm exhibited exceptional performance in the classification task (presence/absence) and achieved noteworthy results in regression (number of sightings), being the most effective machine learning algorithm among those used. It achieved classification results, in terms of F-score, around the value of 0.9 for the proposed Scenario 1." @default.
- W4384694679 created "2023-07-20" @default.
- W4384694679 creator A5006062781 @default.
- W4384694679 creator A5034384417 @default.
- W4384694679 creator A5060780612 @default.
- W4384694679 creator A5083855932 @default.
- W4384694679 creator A5092197708 @default.
- W4384694679 date "2023-07-17" @default.
- W4384694679 modified "2023-10-18" @default.
- W4384694679 title "Machine Learning Classification–Regression Schemes for Desert Locust Presence Prediction in Western Africa" @default.
- W4384694679 cites W1498436455 @default.
- W4384694679 cites W1584935767 @default.
- W4384694679 cites W1770071703 @default.
- W4384694679 cites W1964357740 @default.
- W4384694679 cites W1975480296 @default.
- W4384694679 cites W1987552279 @default.
- W4384694679 cites W2039698279 @default.
- W4384694679 cites W2054358123 @default.
- W4384694679 cites W2086104719 @default.
- W4384694679 cites W2126326837 @default.
- W4384694679 cites W2148143831 @default.
- W4384694679 cites W2155482699 @default.
- W4384694679 cites W2275478486 @default.
- W4384694679 cites W2885589216 @default.
- W4384694679 cites W2888728157 @default.
- W4384694679 cites W2911964244 @default.
- W4384694679 cites W2915235685 @default.
- W4384694679 cites W3025949386 @default.
- W4384694679 cites W3040014850 @default.
- W4384694679 cites W3043471286 @default.
- W4384694679 cites W3111322109 @default.
- W4384694679 cites W3151654234 @default.
- W4384694679 cites W3167026604 @default.
- W4384694679 cites W3167387029 @default.
- W4384694679 cites W3189410118 @default.
- W4384694679 cites W3195507119 @default.
- W4384694679 cites W3212696957 @default.
- W4384694679 cites W4210292151 @default.
- W4384694679 cites W4212869541 @default.
- W4384694679 cites W4226314288 @default.
- W4384694679 cites W4236137412 @default.
- W4384694679 cites W4280647682 @default.
- W4384694679 cites W4294132562 @default.
- W4384694679 cites W4297853420 @default.
- W4384694679 cites W4317734434 @default.
- W4384694679 doi "https://doi.org/10.3390/app13148266" @default.
- W4384694679 hasPublicationYear "2023" @default.
- W4384694679 type Work @default.
- W4384694679 citedByCount "0" @default.
- W4384694679 crossrefType "journal-article" @default.
- W4384694679 hasAuthorship W4384694679A5006062781 @default.
- W4384694679 hasAuthorship W4384694679A5034384417 @default.
- W4384694679 hasAuthorship W4384694679A5060780612 @default.
- W4384694679 hasAuthorship W4384694679A5083855932 @default.
- W4384694679 hasAuthorship W4384694679A5092197708 @default.
- W4384694679 hasBestOaLocation W43846946791 @default.
- W4384694679 hasConcept C105795698 @default.
- W4384694679 hasConcept C119857082 @default.
- W4384694679 hasConcept C12267149 @default.
- W4384694679 hasConcept C152877465 @default.
- W4384694679 hasConcept C154945302 @default.
- W4384694679 hasConcept C169258074 @default.
- W4384694679 hasConcept C18903297 @default.
- W4384694679 hasConcept C205649164 @default.
- W4384694679 hasConcept C2776041477 @default.
- W4384694679 hasConcept C2779670156 @default.
- W4384694679 hasConcept C2781335186 @default.
- W4384694679 hasConcept C33923547 @default.
- W4384694679 hasConcept C41008148 @default.
- W4384694679 hasConcept C48921125 @default.
- W4384694679 hasConcept C50644808 @default.
- W4384694679 hasConcept C83546350 @default.
- W4384694679 hasConcept C84525736 @default.
- W4384694679 hasConcept C86803240 @default.
- W4384694679 hasConceptScore W4384694679C105795698 @default.
- W4384694679 hasConceptScore W4384694679C119857082 @default.
- W4384694679 hasConceptScore W4384694679C12267149 @default.
- W4384694679 hasConceptScore W4384694679C152877465 @default.
- W4384694679 hasConceptScore W4384694679C154945302 @default.
- W4384694679 hasConceptScore W4384694679C169258074 @default.
- W4384694679 hasConceptScore W4384694679C18903297 @default.
- W4384694679 hasConceptScore W4384694679C205649164 @default.
- W4384694679 hasConceptScore W4384694679C2776041477 @default.
- W4384694679 hasConceptScore W4384694679C2779670156 @default.
- W4384694679 hasConceptScore W4384694679C2781335186 @default.
- W4384694679 hasConceptScore W4384694679C33923547 @default.
- W4384694679 hasConceptScore W4384694679C41008148 @default.
- W4384694679 hasConceptScore W4384694679C48921125 @default.
- W4384694679 hasConceptScore W4384694679C50644808 @default.
- W4384694679 hasConceptScore W4384694679C83546350 @default.
- W4384694679 hasConceptScore W4384694679C84525736 @default.
- W4384694679 hasConceptScore W4384694679C86803240 @default.
- W4384694679 hasIssue "14" @default.
- W4384694679 hasLocation W43846946791 @default.
- W4384694679 hasOpenAccess W4384694679 @default.
- W4384694679 hasPrimaryLocation W43846946791 @default.
- W4384694679 hasRelatedWork W2100826578 @default.
- W4384694679 hasRelatedWork W3127425528 @default.