Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384694682> ?p ?o ?g. }
- W4384694682 endingPage "747" @default.
- W4384694682 startingPage "747" @default.
- W4384694682 abstract "In recent years, the number of people with disabilities has increased hugely, especially in low- and middle-income countries. At the same time, robotics has made significant advances in the medical field, and many research groups have begun to develop low-cost wearable solutions. The Mechatronics and Dynamic Modelling Lab of the Department of Industrial Engineering at the University of Florence has recently developed a new version of a wearable hand exoskeleton for assistive purposes. In this paper, we will present a new regression method to predict the finger angle position of the first joint from the value of the sEMG of the forearm and the previous position of the finger itself. To acquire the dataset necessary to train the regressor a specific graphical user interface was developed which was able to acquire sEMG data from a Myo armband and the finger position from a Leap Motion Controller. Two long short-term memory (LSTM) models were compared, one in its standard configuration and the other with a convolutional layer, yielding significantly better performance for the second one, with an increase in R2 coefficient from an average value of 0.746 to 0.825, leading to the conclusion that a convolutional layer could increase performance when few sensors are available." @default.
- W4384694682 created "2023-07-20" @default.
- W4384694682 creator A5007445956 @default.
- W4384694682 creator A5079170360 @default.
- W4384694682 creator A5079507780 @default.
- W4384694682 creator A5080395264 @default.
- W4384694682 creator A5092493821 @default.
- W4384694682 date "2023-07-17" @default.
- W4384694682 modified "2023-09-30" @default.
- W4384694682 title "Enhancing sEMG-Based Finger Motion Prediction with CNN-LSTM Regressors for Controlling a Hand Exoskeleton" @default.
- W4384694682 cites W1965019276 @default.
- W4384694682 cites W1980419224 @default.
- W4384694682 cites W2005045639 @default.
- W4384694682 cites W2064675550 @default.
- W4384694682 cites W2106526692 @default.
- W4384694682 cites W2148268262 @default.
- W4384694682 cites W2162438232 @default.
- W4384694682 cites W2165619603 @default.
- W4384694682 cites W2211567389 @default.
- W4384694682 cites W2291134786 @default.
- W4384694682 cites W2472926435 @default.
- W4384694682 cites W2499822966 @default.
- W4384694682 cites W2535309882 @default.
- W4384694682 cites W2544706998 @default.
- W4384694682 cites W2568949798 @default.
- W4384694682 cites W2765434638 @default.
- W4384694682 cites W2770682322 @default.
- W4384694682 cites W2771579111 @default.
- W4384694682 cites W2789937849 @default.
- W4384694682 cites W2845841029 @default.
- W4384694682 cites W2889377359 @default.
- W4384694682 cites W2896225679 @default.
- W4384694682 cites W2899339972 @default.
- W4384694682 cites W2908424401 @default.
- W4384694682 cites W2935084327 @default.
- W4384694682 cites W2942398301 @default.
- W4384694682 cites W2967637111 @default.
- W4384694682 cites W2969970257 @default.
- W4384694682 cites W2983651626 @default.
- W4384694682 cites W3001314219 @default.
- W4384694682 cites W3015931358 @default.
- W4384694682 cites W3046534238 @default.
- W4384694682 cites W3082193699 @default.
- W4384694682 cites W3091353184 @default.
- W4384694682 cites W3097810625 @default.
- W4384694682 cites W3111801319 @default.
- W4384694682 cites W3115842198 @default.
- W4384694682 cites W3124078252 @default.
- W4384694682 cites W3127794598 @default.
- W4384694682 cites W3210892087 @default.
- W4384694682 cites W4200186631 @default.
- W4384694682 cites W4205648095 @default.
- W4384694682 cites W4213139506 @default.
- W4384694682 cites W4214579445 @default.
- W4384694682 cites W4283318593 @default.
- W4384694682 cites W4283718475 @default.
- W4384694682 cites W4290658966 @default.
- W4384694682 cites W4312727156 @default.
- W4384694682 cites W4316658904 @default.
- W4384694682 cites W3118825937 @default.
- W4384694682 doi "https://doi.org/10.3390/machines11070747" @default.
- W4384694682 hasPublicationYear "2023" @default.
- W4384694682 type Work @default.
- W4384694682 citedByCount "0" @default.
- W4384694682 crossrefType "journal-article" @default.
- W4384694682 hasAuthorship W4384694682A5007445956 @default.
- W4384694682 hasAuthorship W4384694682A5079170360 @default.
- W4384694682 hasAuthorship W4384694682A5079507780 @default.
- W4384694682 hasAuthorship W4384694682A5080395264 @default.
- W4384694682 hasAuthorship W4384694682A5092493821 @default.
- W4384694682 hasBestOaLocation W43846946821 @default.
- W4384694682 hasConcept C10138342 @default.
- W4384694682 hasConcept C104114177 @default.
- W4384694682 hasConcept C113843644 @default.
- W4384694682 hasConcept C129307140 @default.
- W4384694682 hasConcept C146549078 @default.
- W4384694682 hasConcept C149635348 @default.
- W4384694682 hasConcept C150594956 @default.
- W4384694682 hasConcept C154945302 @default.
- W4384694682 hasConcept C157915830 @default.
- W4384694682 hasConcept C162324750 @default.
- W4384694682 hasConcept C173608175 @default.
- W4384694682 hasConcept C198082294 @default.
- W4384694682 hasConcept C202444582 @default.
- W4384694682 hasConcept C203479927 @default.
- W4384694682 hasConcept C28704281 @default.
- W4384694682 hasConcept C31972630 @default.
- W4384694682 hasConcept C33923547 @default.
- W4384694682 hasConcept C34413123 @default.
- W4384694682 hasConcept C41008148 @default.
- W4384694682 hasConcept C44154836 @default.
- W4384694682 hasConcept C6557445 @default.
- W4384694682 hasConcept C81363708 @default.
- W4384694682 hasConcept C86803240 @default.
- W4384694682 hasConcept C90509273 @default.
- W4384694682 hasConcept C9652623 @default.
- W4384694682 hasConceptScore W4384694682C10138342 @default.
- W4384694682 hasConceptScore W4384694682C104114177 @default.