Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384694794> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4384694794 endingPage "1814" @default.
- W4384694794 startingPage "1814" @default.
- W4384694794 abstract "Cracks in building facades are inevitable due to the age of the building. Cracks found in the building facade may be further exacerbated if not corrected immediately. Considering the extensive size of some buildings, there is definitely a need to automate the inspection routine to facilitate the inspection process. The incorporation of deep learning technology for the classification of images has proven to be an effective method in many past civil infrastructures like pavements and bridges. There is, however, limited research in the built environment sector. In order to align with the Smart Nation goals of the country, the use of Smart technologies is necessary in the building and construction industry. The focus of the study is to identify the effectiveness of deep learning technology for image classification. Deep learning technology, such as Convolutional Neural Networks (CNN), requires a large amount of data in order to obtain good performance. It is, however, difficult to collect the images manually. This study will cover the transfer learning approach, where image classification can be carried out even with limited data. Using the CNN method achieved an accuracy level of about 89%, while using the transfer learning model achieved an accuracy of 94%. Based on this, it can be concluded that the transfer learning method achieves better performance as compared to the CNN method with the same amount of data input." @default.
- W4384694794 created "2023-07-20" @default.
- W4384694794 creator A5016958619 @default.
- W4384694794 creator A5047497112 @default.
- W4384694794 creator A5049506273 @default.
- W4384694794 creator A5087353780 @default.
- W4384694794 date "2023-07-17" @default.
- W4384694794 modified "2023-10-16" @default.
- W4384694794 title "Building Surface Crack Detection Using Deep Learning Technology" @default.
- W4384694794 cites W2049445112 @default.
- W4384694794 cites W2112796928 @default.
- W4384694794 cites W2136922672 @default.
- W4384694794 cites W2161336914 @default.
- W4384694794 cites W2590667455 @default.
- W4384694794 cites W2598457882 @default.
- W4384694794 cites W2618530766 @default.
- W4384694794 cites W2765854388 @default.
- W4384694794 cites W2792249564 @default.
- W4384694794 cites W2896568470 @default.
- W4384694794 cites W2905163589 @default.
- W4384694794 cites W3005711525 @default.
- W4384694794 cites W3100011500 @default.
- W4384694794 cites W3106985003 @default.
- W4384694794 cites W3125559191 @default.
- W4384694794 cites W3139096236 @default.
- W4384694794 cites W3172191503 @default.
- W4384694794 cites W3174276372 @default.
- W4384694794 cites W3207550576 @default.
- W4384694794 cites W4224930291 @default.
- W4384694794 cites W4283810543 @default.
- W4384694794 cites W4307347546 @default.
- W4384694794 cites W4307818285 @default.
- W4384694794 cites W4381848079 @default.
- W4384694794 doi "https://doi.org/10.3390/buildings13071814" @default.
- W4384694794 hasPublicationYear "2023" @default.
- W4384694794 type Work @default.
- W4384694794 citedByCount "0" @default.
- W4384694794 crossrefType "journal-article" @default.
- W4384694794 hasAuthorship W4384694794A5016958619 @default.
- W4384694794 hasAuthorship W4384694794A5047497112 @default.
- W4384694794 hasAuthorship W4384694794A5049506273 @default.
- W4384694794 hasAuthorship W4384694794A5087353780 @default.
- W4384694794 hasBestOaLocation W43846947941 @default.
- W4384694794 hasConcept C108583219 @default.
- W4384694794 hasConcept C111919701 @default.
- W4384694794 hasConcept C119857082 @default.
- W4384694794 hasConcept C120665830 @default.
- W4384694794 hasConcept C121332964 @default.
- W4384694794 hasConcept C127413603 @default.
- W4384694794 hasConcept C147176958 @default.
- W4384694794 hasConcept C150899416 @default.
- W4384694794 hasConcept C154945302 @default.
- W4384694794 hasConcept C192209626 @default.
- W4384694794 hasConcept C2780113678 @default.
- W4384694794 hasConcept C41008148 @default.
- W4384694794 hasConcept C81363708 @default.
- W4384694794 hasConcept C98045186 @default.
- W4384694794 hasConceptScore W4384694794C108583219 @default.
- W4384694794 hasConceptScore W4384694794C111919701 @default.
- W4384694794 hasConceptScore W4384694794C119857082 @default.
- W4384694794 hasConceptScore W4384694794C120665830 @default.
- W4384694794 hasConceptScore W4384694794C121332964 @default.
- W4384694794 hasConceptScore W4384694794C127413603 @default.
- W4384694794 hasConceptScore W4384694794C147176958 @default.
- W4384694794 hasConceptScore W4384694794C150899416 @default.
- W4384694794 hasConceptScore W4384694794C154945302 @default.
- W4384694794 hasConceptScore W4384694794C192209626 @default.
- W4384694794 hasConceptScore W4384694794C2780113678 @default.
- W4384694794 hasConceptScore W4384694794C41008148 @default.
- W4384694794 hasConceptScore W4384694794C81363708 @default.
- W4384694794 hasConceptScore W4384694794C98045186 @default.
- W4384694794 hasIssue "7" @default.
- W4384694794 hasLocation W43846947941 @default.
- W4384694794 hasOpenAccess W4384694794 @default.
- W4384694794 hasPrimaryLocation W43846947941 @default.
- W4384694794 hasRelatedWork W2997709384 @default.
- W4384694794 hasRelatedWork W3018421652 @default.
- W4384694794 hasRelatedWork W3021430260 @default.
- W4384694794 hasRelatedWork W3091976719 @default.
- W4384694794 hasRelatedWork W3189091156 @default.
- W4384694794 hasRelatedWork W3192840557 @default.
- W4384694794 hasRelatedWork W4220996320 @default.
- W4384694794 hasRelatedWork W4362564549 @default.
- W4384694794 hasRelatedWork W4366224123 @default.
- W4384694794 hasRelatedWork W4382193078 @default.
- W4384694794 hasVolume "13" @default.
- W4384694794 isParatext "false" @default.
- W4384694794 isRetracted "false" @default.
- W4384694794 workType "article" @default.