Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384694851> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4384694851 abstract "Many types of rotating mechanical equipment, such as the primary pump, turbine, and fans, are key components of fourth-generation (Gen IV) advanced reactors. Given that these machines operate in challenging environments with high temperatures and liquid metal corrosion, accurate problem identification and health management are essential for keeping these machines in good working order. This study proposes a deep learning (DL)-based intelligent diagnosis model for the rotating machinery used in fast reactors. The diagnosis model is tested by identifying the faults of bearings and gears. Normalization, augmentation, and splitting of data are applied to prepare the datasets for classification of faults. Multiple diagnosis models containing the multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), and residual network (RESNET) are compared and investigated with the Case Western Reserve University datasets. An improved Transformer model is proposed, and an enhanced embeddings generator is designed to combine the strengths of the CNN and transformer. The effects of the size of the training samples and the domain of data preprocessing, such as the time domain, frequency domain, time-frequency domain, and wavelet domain, are investigated, and it is found that the time-frequency domain is most effective, and the improved Transformer model is appropriate for the fault diagnosis of rotating mechanical equipment. Because of the low probability of the occurrence of a fault, the imbalanced learning method should be improved in future studies." @default.
- W4384694851 created "2023-07-20" @default.
- W4384694851 creator A5011100668 @default.
- W4384694851 creator A5089366118 @default.
- W4384694851 date "2023-07-18" @default.
- W4384694851 modified "2023-09-26" @default.
- W4384694851 title "Study of diagnosis for rotating machinery in advanced nuclear reactor based on deep learning model" @default.
- W4384694851 cites W2107878631 @default.
- W4384694851 cites W2136848157 @default.
- W4384694851 cites W2144499799 @default.
- W4384694851 cites W2194775991 @default.
- W4384694851 cites W2766736793 @default.
- W4384694851 cites W2789811186 @default.
- W4384694851 cites W2791694051 @default.
- W4384694851 cites W2805662770 @default.
- W4384694851 cites W2810292802 @default.
- W4384694851 cites W2811341518 @default.
- W4384694851 cites W2811452306 @default.
- W4384694851 cites W2898531359 @default.
- W4384694851 cites W2919115771 @default.
- W4384694851 cites W2939978363 @default.
- W4384694851 cites W2943251694 @default.
- W4384694851 cites W2945244602 @default.
- W4384694851 cites W2998506103 @default.
- W4384694851 doi "https://doi.org/10.3389/fenrg.2023.1210703" @default.
- W4384694851 hasPublicationYear "2023" @default.
- W4384694851 type Work @default.
- W4384694851 citedByCount "0" @default.
- W4384694851 crossrefType "journal-article" @default.
- W4384694851 hasAuthorship W4384694851A5011100668 @default.
- W4384694851 hasAuthorship W4384694851A5089366118 @default.
- W4384694851 hasBestOaLocation W43846948511 @default.
- W4384694851 hasConcept C103824480 @default.
- W4384694851 hasConcept C108583219 @default.
- W4384694851 hasConcept C119599485 @default.
- W4384694851 hasConcept C119857082 @default.
- W4384694851 hasConcept C127413603 @default.
- W4384694851 hasConcept C136886441 @default.
- W4384694851 hasConcept C144024400 @default.
- W4384694851 hasConcept C153180895 @default.
- W4384694851 hasConcept C154945302 @default.
- W4384694851 hasConcept C165801399 @default.
- W4384694851 hasConcept C19118579 @default.
- W4384694851 hasConcept C19165224 @default.
- W4384694851 hasConcept C31972630 @default.
- W4384694851 hasConcept C34736171 @default.
- W4384694851 hasConcept C41008148 @default.
- W4384694851 hasConcept C50644808 @default.
- W4384694851 hasConcept C60908668 @default.
- W4384694851 hasConcept C66322947 @default.
- W4384694851 hasConcept C81363708 @default.
- W4384694851 hasConceptScore W4384694851C103824480 @default.
- W4384694851 hasConceptScore W4384694851C108583219 @default.
- W4384694851 hasConceptScore W4384694851C119599485 @default.
- W4384694851 hasConceptScore W4384694851C119857082 @default.
- W4384694851 hasConceptScore W4384694851C127413603 @default.
- W4384694851 hasConceptScore W4384694851C136886441 @default.
- W4384694851 hasConceptScore W4384694851C144024400 @default.
- W4384694851 hasConceptScore W4384694851C153180895 @default.
- W4384694851 hasConceptScore W4384694851C154945302 @default.
- W4384694851 hasConceptScore W4384694851C165801399 @default.
- W4384694851 hasConceptScore W4384694851C19118579 @default.
- W4384694851 hasConceptScore W4384694851C19165224 @default.
- W4384694851 hasConceptScore W4384694851C31972630 @default.
- W4384694851 hasConceptScore W4384694851C34736171 @default.
- W4384694851 hasConceptScore W4384694851C41008148 @default.
- W4384694851 hasConceptScore W4384694851C50644808 @default.
- W4384694851 hasConceptScore W4384694851C60908668 @default.
- W4384694851 hasConceptScore W4384694851C66322947 @default.
- W4384694851 hasConceptScore W4384694851C81363708 @default.
- W4384694851 hasLocation W43846948511 @default.
- W4384694851 hasOpenAccess W4384694851 @default.
- W4384694851 hasPrimaryLocation W43846948511 @default.
- W4384694851 hasRelatedWork W2337926734 @default.
- W4384694851 hasRelatedWork W2410085756 @default.
- W4384694851 hasRelatedWork W2738221750 @default.
- W4384694851 hasRelatedWork W2963958000 @default.
- W4384694851 hasRelatedWork W3021430260 @default.
- W4384694851 hasRelatedWork W3156786002 @default.
- W4384694851 hasRelatedWork W4302362904 @default.
- W4384694851 hasRelatedWork W4320802194 @default.
- W4384694851 hasRelatedWork W4381487685 @default.
- W4384694851 hasRelatedWork W564581980 @default.
- W4384694851 hasVolume "11" @default.
- W4384694851 isParatext "false" @default.
- W4384694851 isRetracted "false" @default.
- W4384694851 workType "article" @default.