Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384695237> ?p ?o ?g. }
- W4384695237 abstract "Introduction The difficulties in tea shoot recognition are that the recognition is affected by lighting conditions, it is challenging to segment images with similar backgrounds to the shoot color, and the occlusion and overlap between leaves. Methods To solve the problem of low accuracy of dense small object detection of tea shoots, this paper proposes a real-time dense small object detection algorithm based on multimodal optimization. First, RGB, depth, and infrared images are collected form a multimodal image set, and a complete shoot object labeling is performed. Then, the YOLOv5 model is improved and applied to dense and tiny tea shoot detection. Secondly, based on the improved YOLOv5 model, this paper designs two data layer-based multimodal image fusion methods and a feature layerbased multimodal image fusion method; meanwhile, a cross-modal fusion module (FFA) based on frequency domain and attention mechanisms is designed for the feature layer fusion method to adaptively align and focus critical regions in intra- and inter-modal channel and frequency domain dimensions. Finally, an objective-based scale matching method is developed to further improve the detection performance of small dense objects in natural environments with the assistance of transfer learning techniques. Results and discussion The experimental results indicate that the improved YOLOv5 model increases the mAP50 value by 1.7% compared to the benchmark model with fewer parameters and less computational effort. Compared with the single modality, the multimodal image fusion method increases the mAP50 value in all cases, with the method introducing the FFA module obtaining the highest mAP50 value of 0.827. After the pre-training strategy is used after scale matching, the mAP values can be improved by 1% and 1.4% on the two datasets. The research idea of multimodal optimization in this paper can provide a basis and technical support for dense small object detection." @default.
- W4384695237 created "2023-07-20" @default.
- W4384695237 creator A5042405134 @default.
- W4384695237 creator A5059369226 @default.
- W4384695237 creator A5063699309 @default.
- W4384695237 creator A5065586051 @default.
- W4384695237 creator A5080428406 @default.
- W4384695237 creator A5081881914 @default.
- W4384695237 creator A5084090393 @default.
- W4384695237 date "2023-07-18" @default.
- W4384695237 modified "2023-09-27" @default.
- W4384695237 title "Real-time dense small object detection algorithm based on multi-modal tea shoots" @default.
- W4384695237 cites W1986707004 @default.
- W4384695237 cites W2109255472 @default.
- W4384695237 cites W2179352600 @default.
- W4384695237 cites W2759879112 @default.
- W4384695237 cites W2884832622 @default.
- W4384695237 cites W2894904576 @default.
- W4384695237 cites W2943955917 @default.
- W4384695237 cites W2960111557 @default.
- W4384695237 cites W2963857746 @default.
- W4384695237 cites W2996981924 @default.
- W4384695237 cites W3044607523 @default.
- W4384695237 cites W3047443805 @default.
- W4384695237 cites W3102564565 @default.
- W4384695237 cites W3103294617 @default.
- W4384695237 cites W3209540366 @default.
- W4384695237 cites W3214752088 @default.
- W4384695237 cites W4280489518 @default.
- W4384695237 cites W4285506965 @default.
- W4384695237 cites W4293089594 @default.
- W4384695237 cites W4294686815 @default.
- W4384695237 cites W4302363373 @default.
- W4384695237 cites W4313120585 @default.
- W4384695237 cites W4313506322 @default.
- W4384695237 cites W4323050444 @default.
- W4384695237 cites W3049760476 @default.
- W4384695237 doi "https://doi.org/10.3389/fpls.2023.1224884" @default.
- W4384695237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37534292" @default.
- W4384695237 hasPublicationYear "2023" @default.
- W4384695237 type Work @default.
- W4384695237 citedByCount "0" @default.
- W4384695237 crossrefType "journal-article" @default.
- W4384695237 hasAuthorship W4384695237A5042405134 @default.
- W4384695237 hasAuthorship W4384695237A5059369226 @default.
- W4384695237 hasAuthorship W4384695237A5063699309 @default.
- W4384695237 hasAuthorship W4384695237A5065586051 @default.
- W4384695237 hasAuthorship W4384695237A5080428406 @default.
- W4384695237 hasAuthorship W4384695237A5081881914 @default.
- W4384695237 hasAuthorship W4384695237A5084090393 @default.
- W4384695237 hasBestOaLocation W43846952371 @default.
- W4384695237 hasConcept C115961682 @default.
- W4384695237 hasConcept C120665830 @default.
- W4384695237 hasConcept C121332964 @default.
- W4384695237 hasConcept C13280743 @default.
- W4384695237 hasConcept C138885662 @default.
- W4384695237 hasConcept C153180895 @default.
- W4384695237 hasConcept C154945302 @default.
- W4384695237 hasConcept C185798385 @default.
- W4384695237 hasConcept C192209626 @default.
- W4384695237 hasConcept C205649164 @default.
- W4384695237 hasConcept C2776151529 @default.
- W4384695237 hasConcept C2776401178 @default.
- W4384695237 hasConcept C31972630 @default.
- W4384695237 hasConcept C41008148 @default.
- W4384695237 hasConcept C41895202 @default.
- W4384695237 hasConcept C69744172 @default.
- W4384695237 hasConcept C82990744 @default.
- W4384695237 hasConceptScore W4384695237C115961682 @default.
- W4384695237 hasConceptScore W4384695237C120665830 @default.
- W4384695237 hasConceptScore W4384695237C121332964 @default.
- W4384695237 hasConceptScore W4384695237C13280743 @default.
- W4384695237 hasConceptScore W4384695237C138885662 @default.
- W4384695237 hasConceptScore W4384695237C153180895 @default.
- W4384695237 hasConceptScore W4384695237C154945302 @default.
- W4384695237 hasConceptScore W4384695237C185798385 @default.
- W4384695237 hasConceptScore W4384695237C192209626 @default.
- W4384695237 hasConceptScore W4384695237C205649164 @default.
- W4384695237 hasConceptScore W4384695237C2776151529 @default.
- W4384695237 hasConceptScore W4384695237C2776401178 @default.
- W4384695237 hasConceptScore W4384695237C31972630 @default.
- W4384695237 hasConceptScore W4384695237C41008148 @default.
- W4384695237 hasConceptScore W4384695237C41895202 @default.
- W4384695237 hasConceptScore W4384695237C69744172 @default.
- W4384695237 hasConceptScore W4384695237C82990744 @default.
- W4384695237 hasFunder F4320322922 @default.
- W4384695237 hasLocation W43846952371 @default.
- W4384695237 hasLocation W43846952372 @default.
- W4384695237 hasLocation W43846952373 @default.
- W4384695237 hasOpenAccess W4384695237 @default.
- W4384695237 hasPrimaryLocation W43846952371 @default.
- W4384695237 hasRelatedWork W2052518016 @default.
- W4384695237 hasRelatedWork W2085956791 @default.
- W4384695237 hasRelatedWork W2283162247 @default.
- W4384695237 hasRelatedWork W2314488738 @default.
- W4384695237 hasRelatedWork W2382607599 @default.
- W4384695237 hasRelatedWork W2524507886 @default.
- W4384695237 hasRelatedWork W2771653066 @default.
- W4384695237 hasRelatedWork W3001218575 @default.
- W4384695237 hasRelatedWork W4212983513 @default.