Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384696953> ?p ?o ?g. }
- W4384696953 abstract "Understanding the fundamental heat-transport mechanisms across interfaces comprised of two-dimensional (2D) materials is crucial for the further development of the next generation of optoelectronic devices based on 2D heterostructures for which one of the main factors affecting the device performance is their poor thermal management. Here we use systematic atomistic simulations to unravel the influence of anharmonicity in dictating the thermal boundary conductance across graphene and ${mathrm{Mo}mathrm{S}}_{2}$-based 2D and three-dimensional (3D) interfaces. Specifically, we conduct nonequilibrium molecular dynamics simulations on computational domains with graphene or ${mathrm{Mo}mathrm{S}}_{2}$ layers encapsulated between crystalline or amorphous silicon leads across a wide temperature range (of 50--600 K). We show that while the interfacial conductance across a graphene and crystalline silicon interface demonstrates considerable temperature dependence, the conductance across a graphene and amorphous silicon interface has no significant temperature dependence. In contrast, the thermal boundary conductance for the ${mathrm{Mo}mathrm{S}}_{2}$-based heterostructures with both the crystalline and amorphous leads demonstrate no significant temperature dependence. Our spectral energy-density calculations along with our spectrally resolved heat-flux accumulation calculations on the various interfaces show that anharmonic coupling across the entire vibrational spectrum as well as the strong hybridization of a broader spectrum of the flexural modes with substrate Rayleigh waves in graphene heterostructures give rise to the relatively higher and drastically different heat-transport mechanisms across these interfaces as compared to the ${mathrm{Mo}mathrm{S}}_{2}$-based heterostructures. Through these understandings, we show that one strategy to enhance heat conductance across 2D-3D interfaces is to increase the anharmonic coupling between the acoustic and optic modes in the 2D materials by inducing a stronger interaction strength with the substrates. Our findings elucidate the fundamental heat-transfer mechanisms dictating thermal-boundary conductances across 2D-3D interfaces and will be crucial for heat dissipation in the next generation of optoelectronic devices where the utilization of 2D materials are becoming ubiquitous." @default.
- W4384696953 created "2023-07-20" @default.
- W4384696953 creator A5059389219 @default.
- W4384696953 creator A5077021013 @default.
- W4384696953 date "2023-07-18" @default.
- W4384696953 modified "2023-09-23" @default.
- W4384696953 title "Role of Anharmonicity in Dictating the Thermal Boundary Conductance across Interfaces Comprised of Two-Dimensional Materials" @default.
- W4384696953 cites W1792985474 @default.
- W4384696953 cites W1854019139 @default.
- W4384696953 cites W1970964580 @default.
- W4384696953 cites W1981922743 @default.
- W4384696953 cites W1984975391 @default.
- W4384696953 cites W1985843992 @default.
- W4384696953 cites W1991794210 @default.
- W4384696953 cites W1995639532 @default.
- W4384696953 cites W1997949852 @default.
- W4384696953 cites W1998449708 @default.
- W4384696953 cites W2001314454 @default.
- W4384696953 cites W2002497633 @default.
- W4384696953 cites W2006105172 @default.
- W4384696953 cites W2019465613 @default.
- W4384696953 cites W2019481672 @default.
- W4384696953 cites W2025588260 @default.
- W4384696953 cites W2029463808 @default.
- W4384696953 cites W2030971064 @default.
- W4384696953 cites W2031768278 @default.
- W4384696953 cites W2039211361 @default.
- W4384696953 cites W2055886745 @default.
- W4384696953 cites W2058301310 @default.
- W4384696953 cites W2058872194 @default.
- W4384696953 cites W2061192192 @default.
- W4384696953 cites W2067050957 @default.
- W4384696953 cites W2070624418 @default.
- W4384696953 cites W2082118598 @default.
- W4384696953 cites W2114018976 @default.
- W4384696953 cites W2115786064 @default.
- W4384696953 cites W2116122131 @default.
- W4384696953 cites W2154044591 @default.
- W4384696953 cites W2237078251 @default.
- W4384696953 cites W2319577561 @default.
- W4384696953 cites W2324677433 @default.
- W4384696953 cites W2411855483 @default.
- W4384696953 cites W2484495512 @default.
- W4384696953 cites W2529079180 @default.
- W4384696953 cites W2556981144 @default.
- W4384696953 cites W2583081934 @default.
- W4384696953 cites W2585332996 @default.
- W4384696953 cites W2604780070 @default.
- W4384696953 cites W2605335329 @default.
- W4384696953 cites W2624470047 @default.
- W4384696953 cites W2735008945 @default.
- W4384696953 cites W2749630181 @default.
- W4384696953 cites W2765267178 @default.
- W4384696953 cites W2785267368 @default.
- W4384696953 cites W2792925139 @default.
- W4384696953 cites W2810360551 @default.
- W4384696953 cites W2891002486 @default.
- W4384696953 cites W2909897374 @default.
- W4384696953 cites W2914129136 @default.
- W4384696953 cites W2946735226 @default.
- W4384696953 cites W2967831047 @default.
- W4384696953 cites W3041029313 @default.
- W4384696953 cites W3087915915 @default.
- W4384696953 cites W3098770112 @default.
- W4384696953 cites W3100783706 @default.
- W4384696953 cites W3101219038 @default.
- W4384696953 cites W3112850738 @default.
- W4384696953 cites W3173023448 @default.
- W4384696953 cites W3175436068 @default.
- W4384696953 cites W3214744730 @default.
- W4384696953 cites W4206761692 @default.
- W4384696953 cites W4226190856 @default.
- W4384696953 cites W4280596323 @default.
- W4384696953 cites W4294275917 @default.
- W4384696953 doi "https://doi.org/10.1103/physrevapplied.20.014039" @default.
- W4384696953 hasPublicationYear "2023" @default.
- W4384696953 type Work @default.
- W4384696953 citedByCount "0" @default.
- W4384696953 crossrefType "journal-article" @default.
- W4384696953 hasAuthorship W4384696953A5059389219 @default.
- W4384696953 hasAuthorship W4384696953A5077021013 @default.
- W4384696953 hasConcept C111368507 @default.
- W4384696953 hasConcept C121332964 @default.
- W4384696953 hasConcept C121932024 @default.
- W4384696953 hasConcept C127313418 @default.
- W4384696953 hasConcept C147724859 @default.
- W4384696953 hasConcept C159985019 @default.
- W4384696953 hasConcept C171250308 @default.
- W4384696953 hasConcept C185592680 @default.
- W4384696953 hasConcept C192562407 @default.
- W4384696953 hasConcept C24169881 @default.
- W4384696953 hasConcept C26873012 @default.
- W4384696953 hasConcept C2776390347 @default.
- W4384696953 hasConcept C2777289219 @default.
- W4384696953 hasConcept C2779667780 @default.
- W4384696953 hasConcept C30080830 @default.
- W4384696953 hasConcept C49040817 @default.
- W4384696953 hasConcept C544956773 @default.
- W4384696953 hasConcept C56052488 @default.
- W4384696953 hasConcept C79794668 @default.