Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384697046> ?p ?o ?g. }
- W4384697046 abstract "Abstract This paper employs a machine learning approach to capture firm‐pair production similarity, which depicts how firms' production processes resemble each other using textual data in corporate MD&As. We show that production‐linked firms' average return has strong predictive power on focal firm's future stock return. A hedging portfolio yields an annualised return of 11.69%, which cannot be subsumed by existing factor models. For mechanism tests, we find that the main findings are stronger in firms with higher information asymmetry and higher costs of arbitrage. The production‐linkage measure also predicts future unexpected earnings, suggesting it possibly includes valuable information on firm fundamentals." @default.
- W4384697046 created "2023-07-20" @default.
- W4384697046 creator A5017571656 @default.
- W4384697046 creator A5018943067 @default.
- W4384697046 creator A5025753507 @default.
- W4384697046 creator A5077558876 @default.
- W4384697046 date "2023-07-18" @default.
- W4384697046 modified "2023-10-16" @default.
- W4384697046 title "Production similarity and the cross‐section of stock returns: A machine learning approach" @default.
- W4384697046 cites W1978394996 @default.
- W4384697046 cites W1980054641 @default.
- W4384697046 cites W1995834279 @default.
- W4384697046 cites W2002882686 @default.
- W4384697046 cites W2046519558 @default.
- W4384697046 cites W2050643653 @default.
- W4384697046 cites W2081432842 @default.
- W4384697046 cites W2108095820 @default.
- W4384697046 cites W2125520394 @default.
- W4384697046 cites W2128633294 @default.
- W4384697046 cites W2153524047 @default.
- W4384697046 cites W2164320228 @default.
- W4384697046 cites W2332262482 @default.
- W4384697046 cites W2758738247 @default.
- W4384697046 cites W2898654780 @default.
- W4384697046 cites W3121401171 @default.
- W4384697046 cites W3121647716 @default.
- W4384697046 cites W3121788486 @default.
- W4384697046 cites W3122094160 @default.
- W4384697046 cites W3122146302 @default.
- W4384697046 cites W3122551880 @default.
- W4384697046 cites W3122554332 @default.
- W4384697046 cites W3122556742 @default.
- W4384697046 cites W3122648113 @default.
- W4384697046 cites W3122890729 @default.
- W4384697046 cites W3123123374 @default.
- W4384697046 cites W3123359366 @default.
- W4384697046 cites W3123492911 @default.
- W4384697046 cites W3123517884 @default.
- W4384697046 cites W3123519783 @default.
- W4384697046 cites W3123661710 @default.
- W4384697046 cites W3123671626 @default.
- W4384697046 cites W3123780559 @default.
- W4384697046 cites W3123933194 @default.
- W4384697046 cites W3124131307 @default.
- W4384697046 cites W3124496063 @default.
- W4384697046 cites W3124532889 @default.
- W4384697046 cites W3124978547 @default.
- W4384697046 cites W3125125500 @default.
- W4384697046 cites W3125206904 @default.
- W4384697046 cites W3125297504 @default.
- W4384697046 cites W3125788304 @default.
- W4384697046 cites W3125891473 @default.
- W4384697046 cites W3125952890 @default.
- W4384697046 cites W3126131304 @default.
- W4384697046 cites W3157530123 @default.
- W4384697046 cites W4229911693 @default.
- W4384697046 cites W4237239309 @default.
- W4384697046 cites W4298146935 @default.
- W4384697046 doi "https://doi.org/10.1111/acfi.13144" @default.
- W4384697046 hasPublicationYear "2023" @default.
- W4384697046 type Work @default.
- W4384697046 citedByCount "0" @default.
- W4384697046 crossrefType "journal-article" @default.
- W4384697046 hasAuthorship W4384697046A5017571656 @default.
- W4384697046 hasAuthorship W4384697046A5018943067 @default.
- W4384697046 hasAuthorship W4384697046A5025753507 @default.
- W4384697046 hasAuthorship W4384697046A5077558876 @default.
- W4384697046 hasBestOaLocation W43846970461 @default.
- W4384697046 hasConcept C10138342 @default.
- W4384697046 hasConcept C104317684 @default.
- W4384697046 hasConcept C106159729 @default.
- W4384697046 hasConcept C111472728 @default.
- W4384697046 hasConcept C127413603 @default.
- W4384697046 hasConcept C137577040 @default.
- W4384697046 hasConcept C138885662 @default.
- W4384697046 hasConcept C144133560 @default.
- W4384697046 hasConcept C149782125 @default.
- W4384697046 hasConcept C162324750 @default.
- W4384697046 hasConcept C175444787 @default.
- W4384697046 hasConcept C185592680 @default.
- W4384697046 hasConcept C204036174 @default.
- W4384697046 hasConcept C2778136018 @default.
- W4384697046 hasConcept C2778348673 @default.
- W4384697046 hasConcept C2780821815 @default.
- W4384697046 hasConcept C2781426361 @default.
- W4384697046 hasConcept C31266012 @default.
- W4384697046 hasConcept C55493867 @default.
- W4384697046 hasConcept C78519656 @default.
- W4384697046 hasConceptScore W4384697046C10138342 @default.
- W4384697046 hasConceptScore W4384697046C104317684 @default.
- W4384697046 hasConceptScore W4384697046C106159729 @default.
- W4384697046 hasConceptScore W4384697046C111472728 @default.
- W4384697046 hasConceptScore W4384697046C127413603 @default.
- W4384697046 hasConceptScore W4384697046C137577040 @default.
- W4384697046 hasConceptScore W4384697046C138885662 @default.
- W4384697046 hasConceptScore W4384697046C144133560 @default.
- W4384697046 hasConceptScore W4384697046C149782125 @default.
- W4384697046 hasConceptScore W4384697046C162324750 @default.
- W4384697046 hasConceptScore W4384697046C175444787 @default.
- W4384697046 hasConceptScore W4384697046C185592680 @default.