Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384697281> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4384697281 endingPage "8" @default.
- W4384697281 startingPage "1" @default.
- W4384697281 abstract "No AccessEngineering NotesEffects of Structural Flexibility on Flight Control of a QuadrotorChristopher S. Smith and Alok SinhaChristopher S. SmithPennsylvania State University, University Park, Pennsylvania 16802*Researcher, Applied Research Lab at Penn State; . Member AIAA (Corresponding Author).Search for more papers by this author and Alok SinhaPennsylvania State University, University Park, Pennsylvania 16802†Professor of Mechanical Engineering; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:18 Jul 2023https://doi.org/10.2514/1.G007550SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Ahuja V., Hartfield R. and Chakraborty I., “Gust Response Analysis for Early Design of Advanced Air Vehicle Concepts,” APISAT 2019: Asia Pacific International Symposium on Aerospace Technology, Engineers Australia, Gold Coast, Australia, 2019. Google Scholar[2] Mahony R., Kumar V. and Corke P., “Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor,” IEEE Robotics and Automation Magazine, Vol. 19, No. 3, 2012, pp. 20–32. https://doi.org/10.1109/MRA.2012.2206474 CrossrefGoogle Scholar[3] Hoffmann G., Huang H., Waslander S. and Tomlin C., “Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2007-6461, 2007. Google Scholar[4] Bershadsky D., “Electric Multirotor Design and Optimization,” Ph.D. Thesis, Georgia Inst. of Technology, Atlanta, GA, 2017. Google Scholar[5] Smith C. and Sinha A., “Time Varying Rotor Aerodynamics for Quadrotor Vehicles,” AIAA SciTech 2023 Forum, AIAA Paper 2023-2613, 2023. https://doi.org/10.2514/6.2023-2613 LinkGoogle Scholar[6] Thomson W., Theory of Vibration with Applications, CRC Press, Boca Raton, FL, 1996. Google Scholar[7] Du W., Wie B. and Whorton M., “Dynamic Modeling and Flight Control Simulation of a Large Flexible Launch Vehicle,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-6620, 2008. LinkGoogle Scholar[8] Juhasz O., Celi R. and Tischler M. B., “Flight Dynamics Simulation Modeling of a Large Flexible Tiltrotor Aircraft,” Journal of the American Helicopter Society, Vol. 67, No. 2, 2021, pp. 1–16. Google Scholar[9] Tuzcu I., “Dynamics and Control of Flexible Aircraft,” Ph.D. Thesis, Virginia Tech, Blacksburg, VA, 2001. Google Scholar[10] Silvestre F. J., Guimarães Neto A. B., Bertolin R. M., da Silva R. G. A. and Paglione P., “Aircraft Control Based on Flexible Aircraft Dynamics,” Journal of Aircraft, Vol. 54, No. 1, 2017, pp. 262–271. https://doi.org/10.2514/1.C033834 LinkGoogle Scholar[11] Dillsaver M., Cesnik C. and Kolmanovsky I., “Gust Load Alleviation Control for Very Flexible Aircraft,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2011-6368, 2011. LinkGoogle Scholar[12] Qi P. and Zhao X., “Flight Control for Very Flexible Aircraft Using Model-Free Adaptive Control,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 3, 2020, pp. 608–619. https://doi.org/10.2514/1.G004761 LinkGoogle Scholar[13] Gevarter W. B., “Basic Relations for Control of Flexible Vehicles,” AIAA Journal, Vol. 8, No. 4, 1970, pp. 666–672. https://doi.org/10.2514/3.5739 LinkGoogle Scholar[14] Stevens B. L., Lewis F. L. and Johnson E. N., Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Wiley, Hoboken, NJ, 2015, Chaps. 1–2. CrossrefGoogle Scholar[15] Bangura M., Melega M., Naldi R. and Mahony R., “Aerodynamics of Rotor Blades for Quadrotors,” arXiv preprint, arXiv:1601.00733, 2016. Google Scholar[16] Bristeau P.-J., Martin P., Salaün E. and Petit N., “The Role of Propeller Aerodynamics in the Model of a Quadrotor UAV,” 2009 European Control Conference (ECC), IEEE, New York, 2009. Google Scholar[17] Powers C., Mellinger D. and Kumar V., “Quadrotor Kinematics and Dynamics,” Handbook of Unmanned Aerial Vehicles, Springer, Dordrecht, 2015, pp. 307–328. CrossrefGoogle Scholar[18] Leishman J. G., Principles of Helicopter Aerodynamics, Cambridge Univ. Press, Cambridge, England, U.K., 2002, Chaps. 2–8. Google Scholar[19] Franklin G. F., Powell J. D. and Emami-Naeini A., Feedback Control of Dynamic Systems, Prentice–Hall, Upper Saddle River, NJ, 2019, Chap. 10. Google Scholar[20] Corke P., Robotic Vision and Control, Springer, Berlin, 2017, Chap. 4. Google Scholar[21] Pounds P. E. I., “Design, Construction and Control of a Large Quadrotor Micro Air Vehicle,” Ph.D. Thesis, Australian National Univ., Canberra, Australia, 2007. Google Scholar[22] Bouabdallah S., Noth A. and Siegwart R., “PID vs LQ Control Techniques Applied to an Indoor Micro Quadrotor,” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), No. 3, IEEE, New York, 2004, pp. 2451–2456. Google Scholar[23] García R. A., Rubio F. R. and Ortega M. G., “Robust PID Control of the Quadrotor Helicopter,” IFAC Proceedings Volumes, Vol. 45, No. 3, 2012, pp. 229–234. https://doi.org/10.3182/20120328-3-IT-3014.00039 CrossrefGoogle Scholar[24] O’Brien R. T. and Howe J. M., “Optimal PID Controller Design Using Standard Optimal Control Techniques,” Proceedings of the American Control Conference, IEEE, New York, 2008. Google Scholar[25] Miranda-Colorado R. and Aguilar L. T., “Robust PID Control of Quadrotors with Power Reduction Analysis,” ISA Transactions, Vol. 98, March 2020, pp. 47–62. https://doi.org/10.1016/j.isatra.2019.08.045 Google Scholar[26] Liu C., Pan J. and Chang Y., “PID and LQR Trajectory Tracking Control for an Unmanned Quadrotor Helicopter: Experimental Studies,” 35th Chinese Control Conference (CCC), IEEE, New York, 2016. Google Scholar[27] Khatoon S., Gupta D. and Das L. K., “PID & LQR Control for a Quadrotor: Modeling and Simulation,” 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, New York, 2014. Google Scholar[28] Control System Toolbox, MathWorks, Inc., Natick, MA, 2020. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft Components and StructureAircraft ControlAircraft DesignAircraft Flight Control SystemAircraft Operations and TechnologyAircraft Stability and ControlAircraftsControl TheoryFlexible and Active StructuresGuidance, Navigation, and Control SystemsMechanical and Structural VibrationsQuadcopterStructural Design and DevelopmentStructural EngineeringStructural Kinematics and DynamicsStructures, Design and TestUnmanned Aerial Vehicle KeywordsQuadcopterAircraft Flight Control SystemLinear Time Invariant SystemStructural Kinematics and DynamicsFlexible and Active StructuresAircraft Components and StructureAerodynamic AnalysisMechanical and Structural VibrationsFlight DynamicsPDF Received16 February 2023Accepted9 June 2023Published online18 July 2023" @default.
- W4384697281 created "2023-07-20" @default.
- W4384697281 creator A5011350239 @default.
- W4384697281 creator A5033759687 @default.
- W4384697281 date "2023-07-18" @default.
- W4384697281 modified "2023-09-23" @default.
- W4384697281 title "Effects of Structural Flexibility on Flight Control of a Quadrotor" @default.
- W4384697281 cites W118146645 @default.
- W4384697281 cites W1973734421 @default.
- W4384697281 cites W2109073443 @default.
- W4384697281 cites W2156767655 @default.
- W4384697281 cites W2313678068 @default.
- W4384697281 cites W2485992890 @default.
- W4384697281 cites W2517644035 @default.
- W4384697281 cites W2907275873 @default.
- W4384697281 cites W2972057980 @default.
- W4384697281 cites W3208300360 @default.
- W4384697281 cites W4317651456 @default.
- W4384697281 cites W80180111 @default.
- W4384697281 cites W2991475721 @default.
- W4384697281 doi "https://doi.org/10.2514/1.g007550" @default.
- W4384697281 hasPublicationYear "2023" @default.
- W4384697281 type Work @default.
- W4384697281 citedByCount "0" @default.
- W4384697281 crossrefType "journal-article" @default.
- W4384697281 hasAuthorship W4384697281A5011350239 @default.
- W4384697281 hasAuthorship W4384697281A5033759687 @default.
- W4384697281 hasConcept C11413529 @default.
- W4384697281 hasConcept C127413603 @default.
- W4384697281 hasConcept C13393347 @default.
- W4384697281 hasConcept C146978453 @default.
- W4384697281 hasConcept C162324750 @default.
- W4384697281 hasConcept C167740415 @default.
- W4384697281 hasConcept C178802073 @default.
- W4384697281 hasConcept C187736073 @default.
- W4384697281 hasConcept C2780598303 @default.
- W4384697281 hasConcept C2781351190 @default.
- W4384697281 hasConcept C41008148 @default.
- W4384697281 hasConcept C48103436 @default.
- W4384697281 hasConceptScore W4384697281C11413529 @default.
- W4384697281 hasConceptScore W4384697281C127413603 @default.
- W4384697281 hasConceptScore W4384697281C13393347 @default.
- W4384697281 hasConceptScore W4384697281C146978453 @default.
- W4384697281 hasConceptScore W4384697281C162324750 @default.
- W4384697281 hasConceptScore W4384697281C167740415 @default.
- W4384697281 hasConceptScore W4384697281C178802073 @default.
- W4384697281 hasConceptScore W4384697281C187736073 @default.
- W4384697281 hasConceptScore W4384697281C2780598303 @default.
- W4384697281 hasConceptScore W4384697281C2781351190 @default.
- W4384697281 hasConceptScore W4384697281C41008148 @default.
- W4384697281 hasConceptScore W4384697281C48103436 @default.
- W4384697281 hasLocation W43846972811 @default.
- W4384697281 hasOpenAccess W4384697281 @default.
- W4384697281 hasPrimaryLocation W43846972811 @default.
- W4384697281 hasRelatedWork W1955884093 @default.
- W4384697281 hasRelatedWork W1980176220 @default.
- W4384697281 hasRelatedWork W2042197179 @default.
- W4384697281 hasRelatedWork W2135713238 @default.
- W4384697281 hasRelatedWork W2330287319 @default.
- W4384697281 hasRelatedWork W2402559577 @default.
- W4384697281 hasRelatedWork W3173943080 @default.
- W4384697281 hasRelatedWork W4232669342 @default.
- W4384697281 hasRelatedWork W4252062074 @default.
- W4384697281 hasRelatedWork W4366390295 @default.
- W4384697281 isParatext "false" @default.
- W4384697281 isRetracted "false" @default.
- W4384697281 workType "article" @default.