Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384697810> ?p ?o ?g. }
- W4384697810 abstract "Abstract Alzheimer's disorder (AD) causes permanent impairment in the brain's memory of the cellular system, leading to the initiation of dementia. Earlier detection of Alzheimer's disease in the initial stages is challenging for researchers. Deep learning and machine learning‐based techniques can help resolve many issues associated with brain imaging exploration. Brain MR Images (Brain‐MRI) are used to detect Alzheimer's in computable research work. To correctly categorize the stages of Alzheimer's disease, discriminative features need to be extracted from the MR images. Recently, many studies have used deep learning methods for the early detection of this disorder. However, overfitting degrades the deep learning method's performance because the dataset's selection images are smaller and imbalanced. Some studies could not reach more discriminative and effectual attention‐aware features for Alzheimer's stage classification to increase the model performance. In this paper, we develop a novel hierarchical residual attention learning‐inspired multistage conjoined twin network (HRAL‐CTNN) to classify the stages of Alzheimer's. We used augmentation approaches to scale insufficient and imbalanced data. The HRAL‐CTNN is efficiently overcoming the issues of not obtaining efficient attention‐aware and generative features for Alzheimer's stage classification. The proposed model solved the problem of redundant features by extracting attentive discriminant features, and scaling imbalance data by data augmentation, after that training and validation using HRAL‐CTNN. The execution of this proposed work has been performed on the ADNI MRI dataset. This work achieved outstanding accuracy of 99.97 0.01% and F1 score of 99.30 0.02% for Alzheimer's stage classification. This model proposed by our group outperformed the existing related studies in terms of the model's performance score." @default.
- W4384697810 created "2023-07-20" @default.
- W4384697810 creator A5013636671 @default.
- W4384697810 creator A5036351021 @default.
- W4384697810 creator A5071607220 @default.
- W4384697810 date "2023-07-17" @default.
- W4384697810 modified "2023-09-23" @default.
- W4384697810 title "An intelligent hierarchical residual attention learning‐based conjoined twin neural network for Alzheimer's stage detection and prediction" @default.
- W4384697810 cites W1566792576 @default.
- W4384697810 cites W1910549955 @default.
- W4384697810 cites W1984020445 @default.
- W4384697810 cites W1991293234 @default.
- W4384697810 cites W2084358449 @default.
- W4384697810 cites W2087964262 @default.
- W4384697810 cites W2091955381 @default.
- W4384697810 cites W2093602450 @default.
- W4384697810 cites W2098017711 @default.
- W4384697810 cites W2122320288 @default.
- W4384697810 cites W2122328291 @default.
- W4384697810 cites W2132461552 @default.
- W4384697810 cites W2140082297 @default.
- W4384697810 cites W2148601182 @default.
- W4384697810 cites W2148833582 @default.
- W4384697810 cites W2151669622 @default.
- W4384697810 cites W2218823830 @default.
- W4384697810 cites W2417429787 @default.
- W4384697810 cites W2498148408 @default.
- W4384697810 cites W2575285771 @default.
- W4384697810 cites W2582180708 @default.
- W4384697810 cites W2592929672 @default.
- W4384697810 cites W2602709638 @default.
- W4384697810 cites W2649854718 @default.
- W4384697810 cites W2749168504 @default.
- W4384697810 cites W2770966822 @default.
- W4384697810 cites W2775724624 @default.
- W4384697810 cites W2789714579 @default.
- W4384697810 cites W2790040701 @default.
- W4384697810 cites W2795965218 @default.
- W4384697810 cites W2904977129 @default.
- W4384697810 cites W2905035821 @default.
- W4384697810 cites W2907148404 @default.
- W4384697810 cites W2907364764 @default.
- W4384697810 cites W2914762504 @default.
- W4384697810 cites W2919115771 @default.
- W4384697810 cites W2947168485 @default.
- W4384697810 cites W2948184028 @default.
- W4384697810 cites W2949980035 @default.
- W4384697810 cites W2950651700 @default.
- W4384697810 cites W2952767732 @default.
- W4384697810 cites W2955007765 @default.
- W4384697810 cites W2955983623 @default.
- W4384697810 cites W2971066862 @default.
- W4384697810 cites W3013201634 @default.
- W4384697810 cites W3019196002 @default.
- W4384697810 cites W3022315685 @default.
- W4384697810 cites W3025796938 @default.
- W4384697810 cites W3102185977 @default.
- W4384697810 cites W4200472450 @default.
- W4384697810 cites W4200576184 @default.
- W4384697810 cites W4211139529 @default.
- W4384697810 cites W4212863985 @default.
- W4384697810 cites W4313313307 @default.
- W4384697810 cites W4360995101 @default.
- W4384697810 doi "https://doi.org/10.1111/coin.12594" @default.
- W4384697810 hasPublicationYear "2023" @default.
- W4384697810 type Work @default.
- W4384697810 citedByCount "0" @default.
- W4384697810 crossrefType "journal-article" @default.
- W4384697810 hasAuthorship W4384697810A5013636671 @default.
- W4384697810 hasAuthorship W4384697810A5036351021 @default.
- W4384697810 hasAuthorship W4384697810A5071607220 @default.
- W4384697810 hasConcept C108583219 @default.
- W4384697810 hasConcept C119857082 @default.
- W4384697810 hasConcept C153180895 @default.
- W4384697810 hasConcept C154945302 @default.
- W4384697810 hasConcept C22019652 @default.
- W4384697810 hasConcept C41008148 @default.
- W4384697810 hasConcept C50644808 @default.
- W4384697810 hasConcept C97931131 @default.
- W4384697810 hasConceptScore W4384697810C108583219 @default.
- W4384697810 hasConceptScore W4384697810C119857082 @default.
- W4384697810 hasConceptScore W4384697810C153180895 @default.
- W4384697810 hasConceptScore W4384697810C154945302 @default.
- W4384697810 hasConceptScore W4384697810C22019652 @default.
- W4384697810 hasConceptScore W4384697810C41008148 @default.
- W4384697810 hasConceptScore W4384697810C50644808 @default.
- W4384697810 hasConceptScore W4384697810C97931131 @default.
- W4384697810 hasLocation W43846978101 @default.
- W4384697810 hasOpenAccess W4384697810 @default.
- W4384697810 hasPrimaryLocation W43846978101 @default.
- W4384697810 hasRelatedWork W2024160000 @default.
- W4384697810 hasRelatedWork W2061273563 @default.
- W4384697810 hasRelatedWork W2285052147 @default.
- W4384697810 hasRelatedWork W2729514902 @default.
- W4384697810 hasRelatedWork W2773500201 @default.
- W4384697810 hasRelatedWork W2989932438 @default.
- W4384697810 hasRelatedWork W3099765033 @default.
- W4384697810 hasRelatedWork W4285802257 @default.
- W4384697810 hasRelatedWork W4361732492 @default.
- W4384697810 hasRelatedWork W4380075502 @default.