Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384698141> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4384698141 abstract "Deep Reinforcement Learning-based Task Assignment and Path Planning for Multi-agent Construction Robots Xinghui Xu and Borja García de Soto Pages 20-23 (ICRA 2023 Future of Construction Workshop Papers, ISSN 2413-5844) Abstract: Recent developments in deep learning have enabled reinforcement learning (RL) methods to drive optimal policies for a sophisticated high-dimensional environment, which is suitable to overcome the challenges of implementing on-site construction robots, such as the dynamic nature of the construction environment and inherent complexity to solve the multiple decision-makers interacting simultaneously. In this research, we are trying to propose a systematic framework to adopt deep reinforcement learning (DRL) algorithms into on-site construction robotic applications (e.g., bricklaying platforms). This research has two main objectives: 1) Implement a multi-agent path-planning (MAPP) method for on-site robots that allow multiple mobile robots to navigate through the environment toward the assigned goal position and conduct the desired task logic while avoiding collisions, and 2) integrate the multi-agent task allocation (MATA) framework to solve complex tasks (e.g., laying bricks or delivering materials) through the cooperation of individual agents by assigning different tasks and roles to individual robots, which allows multiple robots to work simultaneously, just as how human workers act on a job site to make the best advantages of the productivity gains. Keywords: No keywords DOI: https://doi.org/10.22260/ICRA2023/0008 Download fulltext Download BibTex Download Endnote (RIS) TeX Import to Mendeley" @default.
- W4384698141 created "2023-07-20" @default.
- W4384698141 creator A5025466195 @default.
- W4384698141 creator A5076549760 @default.
- W4384698141 date "2023-07-17" @default.
- W4384698141 modified "2023-09-23" @default.
- W4384698141 title "Deep Reinforcement Learning-based Task Assignment and Path Planning for Multi-agent Construction Robots" @default.
- W4384698141 doi "https://doi.org/10.22260/icra2023/0008" @default.
- W4384698141 hasPublicationYear "2023" @default.
- W4384698141 type Work @default.
- W4384698141 citedByCount "0" @default.
- W4384698141 crossrefType "proceedings-article" @default.
- W4384698141 hasAuthorship W4384698141A5025466195 @default.
- W4384698141 hasAuthorship W4384698141A5076549760 @default.
- W4384698141 hasConcept C107457646 @default.
- W4384698141 hasConcept C127413603 @default.
- W4384698141 hasConcept C136764020 @default.
- W4384698141 hasConcept C154945302 @default.
- W4384698141 hasConcept C201995342 @default.
- W4384698141 hasConcept C2777735758 @default.
- W4384698141 hasConcept C2780154274 @default.
- W4384698141 hasConcept C2780451532 @default.
- W4384698141 hasConcept C31258907 @default.
- W4384698141 hasConcept C41008148 @default.
- W4384698141 hasConcept C81074085 @default.
- W4384698141 hasConcept C90509273 @default.
- W4384698141 hasConcept C97541855 @default.
- W4384698141 hasConceptScore W4384698141C107457646 @default.
- W4384698141 hasConceptScore W4384698141C127413603 @default.
- W4384698141 hasConceptScore W4384698141C136764020 @default.
- W4384698141 hasConceptScore W4384698141C154945302 @default.
- W4384698141 hasConceptScore W4384698141C201995342 @default.
- W4384698141 hasConceptScore W4384698141C2777735758 @default.
- W4384698141 hasConceptScore W4384698141C2780154274 @default.
- W4384698141 hasConceptScore W4384698141C2780451532 @default.
- W4384698141 hasConceptScore W4384698141C31258907 @default.
- W4384698141 hasConceptScore W4384698141C41008148 @default.
- W4384698141 hasConceptScore W4384698141C81074085 @default.
- W4384698141 hasConceptScore W4384698141C90509273 @default.
- W4384698141 hasConceptScore W4384698141C97541855 @default.
- W4384698141 hasLocation W43846981411 @default.
- W4384698141 hasOpenAccess W4384698141 @default.
- W4384698141 hasPrimaryLocation W43846981411 @default.
- W4384698141 hasRelatedWork W2000120653 @default.
- W4384698141 hasRelatedWork W2108886361 @default.
- W4384698141 hasRelatedWork W2166791242 @default.
- W4384698141 hasRelatedWork W2176548496 @default.
- W4384698141 hasRelatedWork W2323122434 @default.
- W4384698141 hasRelatedWork W2799139340 @default.
- W4384698141 hasRelatedWork W3127201362 @default.
- W4384698141 hasRelatedWork W3158693955 @default.
- W4384698141 hasRelatedWork W4229726131 @default.
- W4384698141 hasRelatedWork W4297609211 @default.
- W4384698141 isParatext "false" @default.
- W4384698141 isRetracted "false" @default.
- W4384698141 workType "article" @default.