Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384698201> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4384698201 abstract "Chapter 1 presents a study using machine learning algorithms to forecast Canadian monthly real GDP growth using Google Trends (GT) data and official data, such as employment, before the official release of GDP data. Nonlinear tree-based ensemble algorithms like eXtreme Gradient Boosting (XGBoost), CatBoost, Random Forest (RF), and Microsoft's Light Gradient Boosting Machine (LightGBM), as well as the Support Vector Machine (SVM) algorithm are used for forecasting. The results show that CatBoost performs best for short-horizon forecasts, while SVM is effective for long-horizon forecasts. Chapter 2 introduces a natural language processing (NLP) based approach to measuring economic policy uncertainty (EPU) induced by the COVID-19 pandemic in Canada and the US. A newspaper-based EPU index is developed using several algorithms, including the rapid automatic keyword extraction algorithm (RAKE), RoBERTa and Sentence-BERT algorithms, PyLucene search engine, and GrapeNLP local grammar engine. The EPU-NLP index is compared to an index based on a strictly Boolean method, and it is found that the former is more effective in capturing COVID-19-related uncertainty. The EPU-NLP index generates larger declines in key macroeconomic variables than the EPU-Boolean index when subjected to a one standard deviation economic policy uncertainty shock using a structural VAR approach. Chapter 3 focuses on a unit-root problem that arises in small-open-economy RBC models. The closing devices proposed by Schmitt-Grohé and Uribe to induce stationarity in such models are analyzed. It is found that Seoane's analysis of the business cycle characteristics of Argentina, which identified a unit-root problem in the form of extreme persistence in consumption, output, and the trade-balance-to-output ratio, was affected by the values assigned to various parameters and his choice of a pruning method. The unit-root problem and inordinately large second moments are addressed by varying the values of the risk aversion parameter and the wage elasticity of labor supply, using various third-order perturbation methods, and applying third-order perturbation without pruning but with revised parameter values. Finally, the results show that the closing devices effectively generate greater consumption volatility than output and a counter-cyclical relationship between the trade balance and GDP." @default.
- W4384698201 created "2023-07-20" @default.
- W4384698201 creator A5074069466 @default.
- W4384698201 date "2023-07-18" @default.
- W4384698201 modified "2023-09-23" @default.
- W4384698201 title "Three Essays in Macroeconomics with a Focus on Forecasting GDP Growth with Machine Learning, Measuring Uncertainty with NLP, and Revisiting a Small Open Economy RBC Model" @default.
- W4384698201 doi "https://doi.org/10.22215/etd/2023-15577" @default.
- W4384698201 hasPublicationYear "2023" @default.
- W4384698201 type Work @default.
- W4384698201 citedByCount "0" @default.
- W4384698201 crossrefType "dissertation" @default.
- W4384698201 hasAuthorship W4384698201A5074069466 @default.
- W4384698201 hasBestOaLocation W43846982011 @default.
- W4384698201 hasConcept C11413529 @default.
- W4384698201 hasConcept C119857082 @default.
- W4384698201 hasConcept C12267149 @default.
- W4384698201 hasConcept C136764020 @default.
- W4384698201 hasConcept C149782125 @default.
- W4384698201 hasConcept C153294291 @default.
- W4384698201 hasConcept C154945302 @default.
- W4384698201 hasConcept C162324750 @default.
- W4384698201 hasConcept C169258074 @default.
- W4384698201 hasConcept C181683161 @default.
- W4384698201 hasConcept C205649164 @default.
- W4384698201 hasConcept C2777382242 @default.
- W4384698201 hasConcept C2781013037 @default.
- W4384698201 hasConcept C41008148 @default.
- W4384698201 hasConcept C66402592 @default.
- W4384698201 hasConcept C70153297 @default.
- W4384698201 hasConceptScore W4384698201C11413529 @default.
- W4384698201 hasConceptScore W4384698201C119857082 @default.
- W4384698201 hasConceptScore W4384698201C12267149 @default.
- W4384698201 hasConceptScore W4384698201C136764020 @default.
- W4384698201 hasConceptScore W4384698201C149782125 @default.
- W4384698201 hasConceptScore W4384698201C153294291 @default.
- W4384698201 hasConceptScore W4384698201C154945302 @default.
- W4384698201 hasConceptScore W4384698201C162324750 @default.
- W4384698201 hasConceptScore W4384698201C169258074 @default.
- W4384698201 hasConceptScore W4384698201C181683161 @default.
- W4384698201 hasConceptScore W4384698201C205649164 @default.
- W4384698201 hasConceptScore W4384698201C2777382242 @default.
- W4384698201 hasConceptScore W4384698201C2781013037 @default.
- W4384698201 hasConceptScore W4384698201C41008148 @default.
- W4384698201 hasConceptScore W4384698201C66402592 @default.
- W4384698201 hasConceptScore W4384698201C70153297 @default.
- W4384698201 hasLocation W43846982011 @default.
- W4384698201 hasOpenAccess W4384698201 @default.
- W4384698201 hasPrimaryLocation W43846982011 @default.
- W4384698201 hasRelatedWork W2725351139 @default.
- W4384698201 hasRelatedWork W2911455822 @default.
- W4384698201 hasRelatedWork W3193538331 @default.
- W4384698201 hasRelatedWork W3195168932 @default.
- W4384698201 hasRelatedWork W3208169454 @default.
- W4384698201 hasRelatedWork W4281616679 @default.
- W4384698201 hasRelatedWork W4293525103 @default.
- W4384698201 hasRelatedWork W4308191010 @default.
- W4384698201 hasRelatedWork W4321636153 @default.
- W4384698201 hasRelatedWork W4375930479 @default.
- W4384698201 isParatext "false" @default.
- W4384698201 isRetracted "false" @default.
- W4384698201 workType "dissertation" @default.