Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384698936> ?p ?o ?g. }
- W4384698936 endingPage "17" @default.
- W4384698936 startingPage "1" @default.
- W4384698936 abstract "The worldwide generation of waste electrical and electronic equipment is continuously growing, with electric vehicle batteries reaching their end-of-life having become a key concern for both the environment and human health in recent years. In this context, the proliferation of Internet of Things standards and data ecosystems is advancing the feasibility of data-driven condition monitoring and remanufacturing. This is particularly desirable for the end-of-life recovery of high-value equipment towards sustainable closed-loop production systems. Low-Power Wide-Area Networks, despite being relatively recent, are starting to be conceived as key-enabling technologies built upon the principles of long-range communication and negligible energy consumption. While LoRaWAN is considered the open standard with the highest level of acceptance from both industry and academia, it is its random access protocol (Aloha) that limits its capacity in large-scale deployments to some extent. Although time-slotted scheduling has proved to alleviate certain scalability limitations, the constrained nature of end nodes and their application-oriented requirements significantly increase the complexity of time-slotted network management tasks. To shed light on this matter, a multi-agent network management system for the on-demand allocation of resources in end-of-life monitoring applications for remanufacturing is introduced in this work. It leverages LoRa’s spreading factor orthogonality and network-wide knowledge to increase the number of nodes served in time-slotted monitoring setups. The proposed system is validated and evaluated for end-of-life monitoring where two representative end-node distributions were emulated, with the achieved network capacity improvements ranging from 75.27% to 249.46% with respect to LoRaWAN’s legacy operation. As a result, the suitability of different agent-based strategies has been evaluated and a number of lessons have been drawnaccording to different application and hardware constraints. While the presented findings can be used to further improve the explainability of the proposed models (in line with the concept of eXplainable AI), the overall framework represents a step forward in lightweight end-of-life condition monitoring for remanufacturing." @default.
- W4384698936 created "2023-07-20" @default.
- W4384698936 creator A5048340039 @default.
- W4384698936 creator A5048367677 @default.
- W4384698936 creator A5058423982 @default.
- W4384698936 creator A5075737151 @default.
- W4384698936 creator A5089368362 @default.
- W4384698936 date "2023-07-07" @default.
- W4384698936 modified "2023-09-27" @default.
- W4384698936 title "Internet-of-Things framework for scalable end-of-life condition monitoring in remanufacturing" @default.
- W4384698936 cites W1966146195 @default.
- W4384698936 cites W2010365467 @default.
- W4384698936 cites W2201263372 @default.
- W4384698936 cites W2332086576 @default.
- W4384698936 cites W2606342706 @default.
- W4384698936 cites W2614897509 @default.
- W4384698936 cites W2761746751 @default.
- W4384698936 cites W2770882945 @default.
- W4384698936 cites W2898664533 @default.
- W4384698936 cites W2899145077 @default.
- W4384698936 cites W2952577115 @default.
- W4384698936 cites W2964887850 @default.
- W4384698936 cites W2976161203 @default.
- W4384698936 cites W2981164368 @default.
- W4384698936 cites W2983762108 @default.
- W4384698936 cites W2989846766 @default.
- W4384698936 cites W2995407089 @default.
- W4384698936 cites W3003338413 @default.
- W4384698936 cites W3010561455 @default.
- W4384698936 cites W3013582178 @default.
- W4384698936 cites W3022056013 @default.
- W4384698936 cites W3037414163 @default.
- W4384698936 cites W3040166679 @default.
- W4384698936 cites W3085081926 @default.
- W4384698936 cites W3092917246 @default.
- W4384698936 cites W3106860178 @default.
- W4384698936 cites W3115920552 @default.
- W4384698936 cites W3129920713 @default.
- W4384698936 cites W3133776659 @default.
- W4384698936 cites W3167586364 @default.
- W4384698936 cites W3210305489 @default.
- W4384698936 cites W4200576583 @default.
- W4384698936 cites W4211158759 @default.
- W4384698936 cites W4248592956 @default.
- W4384698936 cites W4298007590 @default.
- W4384698936 cites W4311987962 @default.
- W4384698936 cites W4318942334 @default.
- W4384698936 doi "https://doi.org/10.3233/ica-230716" @default.
- W4384698936 hasPublicationYear "2023" @default.
- W4384698936 type Work @default.
- W4384698936 citedByCount "0" @default.
- W4384698936 crossrefType "journal-article" @default.
- W4384698936 hasAuthorship W4384698936A5048340039 @default.
- W4384698936 hasAuthorship W4384698936A5048367677 @default.
- W4384698936 hasAuthorship W4384698936A5058423982 @default.
- W4384698936 hasAuthorship W4384698936A5075737151 @default.
- W4384698936 hasAuthorship W4384698936A5089368362 @default.
- W4384698936 hasConcept C110875604 @default.
- W4384698936 hasConcept C117671659 @default.
- W4384698936 hasConcept C127413603 @default.
- W4384698936 hasConcept C136764020 @default.
- W4384698936 hasConcept C151730666 @default.
- W4384698936 hasConcept C24590314 @default.
- W4384698936 hasConcept C2778738845 @default.
- W4384698936 hasConcept C2779343474 @default.
- W4384698936 hasConcept C31258907 @default.
- W4384698936 hasConcept C41008148 @default.
- W4384698936 hasConcept C48044578 @default.
- W4384698936 hasConcept C77088390 @default.
- W4384698936 hasConcept C86803240 @default.
- W4384698936 hasConceptScore W4384698936C110875604 @default.
- W4384698936 hasConceptScore W4384698936C117671659 @default.
- W4384698936 hasConceptScore W4384698936C127413603 @default.
- W4384698936 hasConceptScore W4384698936C136764020 @default.
- W4384698936 hasConceptScore W4384698936C151730666 @default.
- W4384698936 hasConceptScore W4384698936C24590314 @default.
- W4384698936 hasConceptScore W4384698936C2778738845 @default.
- W4384698936 hasConceptScore W4384698936C2779343474 @default.
- W4384698936 hasConceptScore W4384698936C31258907 @default.
- W4384698936 hasConceptScore W4384698936C41008148 @default.
- W4384698936 hasConceptScore W4384698936C48044578 @default.
- W4384698936 hasConceptScore W4384698936C77088390 @default.
- W4384698936 hasConceptScore W4384698936C86803240 @default.
- W4384698936 hasLocation W43846989361 @default.
- W4384698936 hasOpenAccess W4384698936 @default.
- W4384698936 hasPrimaryLocation W43846989361 @default.
- W4384698936 hasRelatedWork W1525643724 @default.
- W4384698936 hasRelatedWork W2067938758 @default.
- W4384698936 hasRelatedWork W2302028273 @default.
- W4384698936 hasRelatedWork W2333420780 @default.
- W4384698936 hasRelatedWork W2364921833 @default.
- W4384698936 hasRelatedWork W2382623646 @default.
- W4384698936 hasRelatedWork W2388030554 @default.
- W4384698936 hasRelatedWork W2461970972 @default.
- W4384698936 hasRelatedWork W3087771547 @default.
- W4384698936 hasRelatedWork W4226151955 @default.
- W4384698936 isParatext "false" @default.
- W4384698936 isRetracted "false" @default.