Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384699077> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4384699077 endingPage "47" @default.
- W4384699077 startingPage "23" @default.
- W4384699077 abstract "Deep Learning is a new generation of artificial neural networks that have transformed our daily lives and has impacted several industries and scientific disciplines in recent years. Recent development in deep learning provides various significant methods to obtain end-to-end learning models from complex data. Generative Adversarial Networks give the idea of learning the deep representations without extensively interpreting the training data. The generative adversarial network involves the generative modeling approach that uses the deep learning approach. The chapter is broadly divided into the following sections as (1) Insights of deep learning & the generative adversarial networks, (2) GAN’s representative variants, training methods, architecture, and mathematical representation, and (3) Efficacy of GAN in different applications. This chapter will gain the recent work done in GAN and implement this technique in the different deep learning applications for healthcare. Here, we will also analyze some of the future perspectives and trends in the forthcoming time.<br>" @default.
- W4384699077 created "2023-07-20" @default.
- W4384699077 creator A5002233220 @default.
- W4384699077 creator A5025712243 @default.
- W4384699077 date "2023-07-06" @default.
- W4384699077 modified "2023-09-23" @default.
- W4384699077 title "Generative Adversarial Networks for Deep Learning in Healthcare: Architecture, Applications and Challenges" @default.
- W4384699077 cites W1971014294 @default.
- W4384699077 cites W2152885278 @default.
- W4384699077 cites W2178155017 @default.
- W4384699077 cites W2463319845 @default.
- W4384699077 cites W2561981131 @default.
- W4384699077 cites W2593414223 @default.
- W4384699077 cites W2617669016 @default.
- W4384699077 cites W2731899572 @default.
- W4384699077 cites W2755577605 @default.
- W4384699077 cites W2765932136 @default.
- W4384699077 cites W2807869636 @default.
- W4384699077 cites W2899901572 @default.
- W4384699077 cites W2919115771 @default.
- W4384699077 cites W2962770929 @default.
- W4384699077 cites W2963092440 @default.
- W4384699077 cites W2964268978 @default.
- W4384699077 cites W2982041717 @default.
- W4384699077 cites W2991302305 @default.
- W4384699077 cites W2995831381 @default.
- W4384699077 cites W3004442222 @default.
- W4384699077 cites W3004868960 @default.
- W4384699077 cites W3005498024 @default.
- W4384699077 cites W3029477994 @default.
- W4384699077 cites W3035231706 @default.
- W4384699077 cites W3035515747 @default.
- W4384699077 cites W4239393587 @default.
- W4384699077 doi "https://doi.org/10.2174/9789815080230123020004" @default.
- W4384699077 hasPublicationYear "2023" @default.
- W4384699077 type Work @default.
- W4384699077 citedByCount "0" @default.
- W4384699077 crossrefType "book-chapter" @default.
- W4384699077 hasAuthorship W4384699077A5002233220 @default.
- W4384699077 hasAuthorship W4384699077A5025712243 @default.
- W4384699077 hasConcept C108583219 @default.
- W4384699077 hasConcept C119857082 @default.
- W4384699077 hasConcept C123657996 @default.
- W4384699077 hasConcept C154945302 @default.
- W4384699077 hasConcept C166957645 @default.
- W4384699077 hasConcept C17744445 @default.
- W4384699077 hasConcept C199539241 @default.
- W4384699077 hasConcept C205649164 @default.
- W4384699077 hasConcept C2522767166 @default.
- W4384699077 hasConcept C2776359362 @default.
- W4384699077 hasConcept C2984842247 @default.
- W4384699077 hasConcept C37736160 @default.
- W4384699077 hasConcept C39890363 @default.
- W4384699077 hasConcept C41008148 @default.
- W4384699077 hasConcept C50644808 @default.
- W4384699077 hasConcept C94625758 @default.
- W4384699077 hasConceptScore W4384699077C108583219 @default.
- W4384699077 hasConceptScore W4384699077C119857082 @default.
- W4384699077 hasConceptScore W4384699077C123657996 @default.
- W4384699077 hasConceptScore W4384699077C154945302 @default.
- W4384699077 hasConceptScore W4384699077C166957645 @default.
- W4384699077 hasConceptScore W4384699077C17744445 @default.
- W4384699077 hasConceptScore W4384699077C199539241 @default.
- W4384699077 hasConceptScore W4384699077C205649164 @default.
- W4384699077 hasConceptScore W4384699077C2522767166 @default.
- W4384699077 hasConceptScore W4384699077C2776359362 @default.
- W4384699077 hasConceptScore W4384699077C2984842247 @default.
- W4384699077 hasConceptScore W4384699077C37736160 @default.
- W4384699077 hasConceptScore W4384699077C39890363 @default.
- W4384699077 hasConceptScore W4384699077C41008148 @default.
- W4384699077 hasConceptScore W4384699077C50644808 @default.
- W4384699077 hasConceptScore W4384699077C94625758 @default.
- W4384699077 hasLocation W43846990771 @default.
- W4384699077 hasOpenAccess W4384699077 @default.
- W4384699077 hasPrimaryLocation W43846990771 @default.
- W4384699077 hasRelatedWork W4223943233 @default.
- W4384699077 hasRelatedWork W4254236733 @default.
- W4384699077 hasRelatedWork W4312200629 @default.
- W4384699077 hasRelatedWork W4320076403 @default.
- W4384699077 hasRelatedWork W4360585206 @default.
- W4384699077 hasRelatedWork W4364306694 @default.
- W4384699077 hasRelatedWork W4379255972 @default.
- W4384699077 hasRelatedWork W4380075502 @default.
- W4384699077 hasRelatedWork W4380925710 @default.
- W4384699077 hasRelatedWork W4383955378 @default.
- W4384699077 isParatext "false" @default.
- W4384699077 isRetracted "false" @default.
- W4384699077 workType "book-chapter" @default.