Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384700523> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4384700523 endingPage "165646" @default.
- W4384700523 startingPage "165646" @default.
- W4384700523 abstract "AQP (Air Quality Prediction) is a very challenging project, and its core issue is how to solve the interaction and influence among meteorological, spatial and temporal factors. To address this central conundrum, we make full use of the characteristics of mechanism model and machine learning and propose a new AQP method based on DM_STGNN (Dynamic Multi-granularity Spatio-temporal Graph Neural Network). This method is the first time to use the air quality model HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory Model) to assist in building a dynamic spatio-temporal graph structure to learn the spatiotemporal relationship of pollutants. DM_STGNN is based on an elaborate encoder-decoder architecture. At the encoder, in order to better mine the spatial dependency, we built a multi-granularity graph structure, used meteorological, time and geographical features to establish node attributes, used well-known HYSPLIT model to dynamically establish the edges among nodes, and used LSTM (Long Short Term Memory) to learn the time-series relationship of pollutant concentrations. At the decoder, in order to better mine the temporal dependency, we built an attention mechanism based LSTM for decoding and AQP. Additionally, in order to efficiently learn the temporal patterns from very long-term historical time series and generate rich contextual information, an unsupervised pre-training model is used to enhance DM_STGNN. The proposed model makes full use of and fully considers the influence of meteorological, spatial and temporal factors, and integrates the advantages of mechanism model and machine learning. On a project-based dataset, we validate the effectiveness of the proposed model and examine its abilities of capturing both fine-grained and long-term influences in AQP. We also compare the proposed model with the state-of-the-art AQP methods on the dataset of Yangtze River Delta city group, the experimental results show the appealing performance of our model over competitive baselines." @default.
- W4384700523 created "2023-07-20" @default.
- W4384700523 creator A5009488253 @default.
- W4384700523 creator A5051733054 @default.
- W4384700523 creator A5075859496 @default.
- W4384700523 creator A5079827377 @default.
- W4384700523 date "2023-11-01" @default.
- W4384700523 modified "2023-09-26" @default.
- W4384700523 title "Air quality prediction by integrating mechanism model and machine learning model" @default.
- W4384700523 cites W1485504984 @default.
- W4384700523 cites W2027129502 @default.
- W4384700523 cites W2059629689 @default.
- W4384700523 cites W2203138842 @default.
- W4384700523 cites W2619148070 @default.
- W4384700523 cites W2888865023 @default.
- W4384700523 cites W2896661041 @default.
- W4384700523 cites W2914487400 @default.
- W4384700523 cites W2990792561 @default.
- W4384700523 cites W2990955039 @default.
- W4384700523 cites W3046470859 @default.
- W4384700523 cites W4285193538 @default.
- W4384700523 cites W4313156423 @default.
- W4384700523 doi "https://doi.org/10.1016/j.scitotenv.2023.165646" @default.
- W4384700523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37474048" @default.
- W4384700523 hasPublicationYear "2023" @default.
- W4384700523 type Work @default.
- W4384700523 citedByCount "0" @default.
- W4384700523 crossrefType "journal-article" @default.
- W4384700523 hasAuthorship W4384700523A5009488253 @default.
- W4384700523 hasAuthorship W4384700523A5051733054 @default.
- W4384700523 hasAuthorship W4384700523A5075859496 @default.
- W4384700523 hasAuthorship W4384700523A5079827377 @default.
- W4384700523 hasConcept C111919701 @default.
- W4384700523 hasConcept C119857082 @default.
- W4384700523 hasConcept C121332964 @default.
- W4384700523 hasConcept C124101348 @default.
- W4384700523 hasConcept C126314574 @default.
- W4384700523 hasConcept C132525143 @default.
- W4384700523 hasConcept C153294291 @default.
- W4384700523 hasConcept C154945302 @default.
- W4384700523 hasConcept C177774035 @default.
- W4384700523 hasConcept C2776914140 @default.
- W4384700523 hasConcept C37914503 @default.
- W4384700523 hasConcept C41008148 @default.
- W4384700523 hasConcept C53469067 @default.
- W4384700523 hasConcept C80444323 @default.
- W4384700523 hasConceptScore W4384700523C111919701 @default.
- W4384700523 hasConceptScore W4384700523C119857082 @default.
- W4384700523 hasConceptScore W4384700523C121332964 @default.
- W4384700523 hasConceptScore W4384700523C124101348 @default.
- W4384700523 hasConceptScore W4384700523C126314574 @default.
- W4384700523 hasConceptScore W4384700523C132525143 @default.
- W4384700523 hasConceptScore W4384700523C153294291 @default.
- W4384700523 hasConceptScore W4384700523C154945302 @default.
- W4384700523 hasConceptScore W4384700523C177774035 @default.
- W4384700523 hasConceptScore W4384700523C2776914140 @default.
- W4384700523 hasConceptScore W4384700523C37914503 @default.
- W4384700523 hasConceptScore W4384700523C41008148 @default.
- W4384700523 hasConceptScore W4384700523C53469067 @default.
- W4384700523 hasConceptScore W4384700523C80444323 @default.
- W4384700523 hasFunder F4320321001 @default.
- W4384700523 hasLocation W43847005231 @default.
- W4384700523 hasLocation W43847005232 @default.
- W4384700523 hasOpenAccess W4384700523 @default.
- W4384700523 hasPrimaryLocation W43847005231 @default.
- W4384700523 hasRelatedWork W1532213207 @default.
- W4384700523 hasRelatedWork W1577931366 @default.
- W4384700523 hasRelatedWork W1594844924 @default.
- W4384700523 hasRelatedWork W2024555427 @default.
- W4384700523 hasRelatedWork W2143670980 @default.
- W4384700523 hasRelatedWork W2909382770 @default.
- W4384700523 hasRelatedWork W2961085424 @default.
- W4384700523 hasRelatedWork W4286629047 @default.
- W4384700523 hasRelatedWork W4306674287 @default.
- W4384700523 hasRelatedWork W4224009465 @default.
- W4384700523 hasVolume "899" @default.
- W4384700523 isParatext "false" @default.
- W4384700523 isRetracted "false" @default.
- W4384700523 workType "article" @default.