Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384701116> ?p ?o ?g. }
- W4384701116 endingPage "119034" @default.
- W4384701116 startingPage "119034" @default.
- W4384701116 abstract "Harvesting solar energy on rooftops can be a promising solution for providing affordable energy. This requires accurately estimating spatio-temporal solar photovoltaic (PV) potential on urban surfaces. However, it is still a challenge to obtain a fast and accurate estimation of rooftop solar PV potential over large urban built-up areas. Thus, this study proposes a parametric-based method to estimate annual rooftop solar irradiation at a fine spatial resolution. Specifically, seven parameters (Digital Surface Model, Sky View Factor, shadow from buildings, shadow from terrain, building volume to façade ratio, slope, and aspect) are determined that having great importance in modeling rooftop solar irradiation. Three machine learning methods (Random Forest (RF), Gradient Boost Regression Tree (GBRT), and AdaBoost) trained by the selected parameters are cross-compared based on R2, Mean Absolute Error (MAE), and computation time. As a case study in Hong Kong, China, the RF outperformed GBRT and AdaBoost, with R2=0.77 and MAE=22.83kWh/m2/year. The time for training and prediction of rooftop solar irradiation is within 13 h, achieving a 99.32% reduction in time compared to the physical-based hemispherical viewshed algorithm. These results suggest that the proposed method can provide an accurate and fast estimation of rooftop solar irradiation for large datasets." @default.
- W4384701116 created "2023-07-20" @default.
- W4384701116 creator A5022175956 @default.
- W4384701116 creator A5025993083 @default.
- W4384701116 creator A5033427661 @default.
- W4384701116 creator A5057797808 @default.
- W4384701116 creator A5070037045 @default.
- W4384701116 creator A5087894434 @default.
- W4384701116 date "2023-11-01" @default.
- W4384701116 modified "2023-09-26" @default.
- W4384701116 title "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach" @default.
- W4384701116 cites W1578978182 @default.
- W4384701116 cites W1978430187 @default.
- W4384701116 cites W1982764668 @default.
- W4384701116 cites W1986009302 @default.
- W4384701116 cites W1986541715 @default.
- W4384701116 cites W1994372258 @default.
- W4384701116 cites W2008023876 @default.
- W4384701116 cites W2020716461 @default.
- W4384701116 cites W2029701037 @default.
- W4384701116 cites W2037135246 @default.
- W4384701116 cites W2037315895 @default.
- W4384701116 cites W2053463056 @default.
- W4384701116 cites W2059449677 @default.
- W4384701116 cites W2062971615 @default.
- W4384701116 cites W2085912010 @default.
- W4384701116 cites W2101664201 @default.
- W4384701116 cites W2158143121 @default.
- W4384701116 cites W2295237907 @default.
- W4384701116 cites W2398368335 @default.
- W4384701116 cites W2474018157 @default.
- W4384701116 cites W2491700121 @default.
- W4384701116 cites W2501076117 @default.
- W4384701116 cites W2521737501 @default.
- W4384701116 cites W2562921783 @default.
- W4384701116 cites W2724951069 @default.
- W4384701116 cites W2754528742 @default.
- W4384701116 cites W2766771864 @default.
- W4384701116 cites W2780722608 @default.
- W4384701116 cites W2791573725 @default.
- W4384701116 cites W2793676216 @default.
- W4384701116 cites W2801596954 @default.
- W4384701116 cites W2808830988 @default.
- W4384701116 cites W2894165819 @default.
- W4384701116 cites W2897654916 @default.
- W4384701116 cites W2897758291 @default.
- W4384701116 cites W2917272448 @default.
- W4384701116 cites W2948171598 @default.
- W4384701116 cites W2967764907 @default.
- W4384701116 cites W2990662198 @default.
- W4384701116 cites W2991643180 @default.
- W4384701116 cites W3005781148 @default.
- W4384701116 cites W3007023337 @default.
- W4384701116 cites W3032775801 @default.
- W4384701116 cites W3033019910 @default.
- W4384701116 cites W3036487070 @default.
- W4384701116 cites W3037170308 @default.
- W4384701116 cites W3147862541 @default.
- W4384701116 cites W3169883390 @default.
- W4384701116 cites W4211114648 @default.
- W4384701116 cites W4285043667 @default.
- W4384701116 cites W4309945004 @default.
- W4384701116 doi "https://doi.org/10.1016/j.renene.2023.119034" @default.
- W4384701116 hasPublicationYear "2023" @default.
- W4384701116 type Work @default.
- W4384701116 citedByCount "0" @default.
- W4384701116 crossrefType "journal-article" @default.
- W4384701116 hasAuthorship W4384701116A5022175956 @default.
- W4384701116 hasAuthorship W4384701116A5025993083 @default.
- W4384701116 hasAuthorship W4384701116A5033427661 @default.
- W4384701116 hasAuthorship W4384701116A5057797808 @default.
- W4384701116 hasAuthorship W4384701116A5070037045 @default.
- W4384701116 hasAuthorship W4384701116A5087894434 @default.
- W4384701116 hasConcept C108320909 @default.
- W4384701116 hasConcept C117797892 @default.
- W4384701116 hasConcept C119599485 @default.
- W4384701116 hasConcept C122523270 @default.
- W4384701116 hasConcept C127413603 @default.
- W4384701116 hasConcept C13280743 @default.
- W4384701116 hasConcept C150217764 @default.
- W4384701116 hasConcept C153294291 @default.
- W4384701116 hasConcept C154945302 @default.
- W4384701116 hasConcept C15744967 @default.
- W4384701116 hasConcept C169258074 @default.
- W4384701116 hasConcept C205649164 @default.
- W4384701116 hasConcept C24300010 @default.
- W4384701116 hasConcept C2778530916 @default.
- W4384701116 hasConcept C39432304 @default.
- W4384701116 hasConcept C41008148 @default.
- W4384701116 hasConcept C41291067 @default.
- W4384701116 hasConcept C44154836 @default.
- W4384701116 hasConcept C50644808 @default.
- W4384701116 hasConcept C541104983 @default.
- W4384701116 hasConcept C542102704 @default.
- W4384701116 hasConcept C62649853 @default.
- W4384701116 hasConceptScore W4384701116C108320909 @default.
- W4384701116 hasConceptScore W4384701116C117797892 @default.
- W4384701116 hasConceptScore W4384701116C119599485 @default.