Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384705071> ?p ?o ?g. }
- W4384705071 abstract "Abstract To reduce the damage of mechanical parts during machining, a tool wear prediction method based on the SVM-Clara model is proposed. By analyzing the support vector machine (SVM) and Clara algorithm, using regular prediction data or unobservable data, the average dissimilarity of all objects is concentrated, and the characteristics of the overall data are accurately represented. Randomly select data samples from the overall data samples according to a certain proportion, and standardize them to improve the clustering quality. Find the best objective function to minimize the damage function and make the predicted value closer to the actual value. Through experiments, it is proved that the method in this paper can accurately predict the tool wear condition, the mean square error value is 0.03, the prediction method is better, and the production efficiency is ensured." @default.
- W4384705071 created "2023-07-20" @default.
- W4384705071 creator A5038880076 @default.
- W4384705071 creator A5090266285 @default.
- W4384705071 date "2023-05-11" @default.
- W4384705071 modified "2023-09-26" @default.
- W4384705071 title "Tool wear prediction method based on the SVM-Clara model" @default.
- W4384705071 cites W1967640926 @default.
- W4384705071 cites W1967979739 @default.
- W4384705071 cites W1977462480 @default.
- W4384705071 cites W1977739409 @default.
- W4384705071 cites W2004381809 @default.
- W4384705071 cites W2008768416 @default.
- W4384705071 cites W2022304229 @default.
- W4384705071 cites W2023388475 @default.
- W4384705071 cites W2024782519 @default.
- W4384705071 cites W2030599768 @default.
- W4384705071 cites W2043857352 @default.
- W4384705071 cites W2050716827 @default.
- W4384705071 cites W2055027897 @default.
- W4384705071 cites W2056719816 @default.
- W4384705071 cites W2058967405 @default.
- W4384705071 cites W2080144857 @default.
- W4384705071 cites W2087367894 @default.
- W4384705071 cites W2088638930 @default.
- W4384705071 cites W2090006809 @default.
- W4384705071 cites W2129369449 @default.
- W4384705071 cites W2141400488 @default.
- W4384705071 cites W2167218164 @default.
- W4384705071 cites W2601486059 @default.
- W4384705071 cites W2792872702 @default.
- W4384705071 cites W2797321218 @default.
- W4384705071 cites W2970007944 @default.
- W4384705071 cites W3044572681 @default.
- W4384705071 cites W3135201047 @default.
- W4384705071 cites W3203116239 @default.
- W4384705071 cites W4205943741 @default.
- W4384705071 cites W4206691210 @default.
- W4384705071 cites W4214556054 @default.
- W4384705071 cites W4239096346 @default.
- W4384705071 cites W2368959535 @default.
- W4384705071 doi "https://doi.org/10.2478/amns.2023.1.00249" @default.
- W4384705071 hasPublicationYear "2023" @default.
- W4384705071 type Work @default.
- W4384705071 citedByCount "0" @default.
- W4384705071 crossrefType "journal-article" @default.
- W4384705071 hasAuthorship W4384705071A5038880076 @default.
- W4384705071 hasAuthorship W4384705071A5090266285 @default.
- W4384705071 hasBestOaLocation W43847050711 @default.
- W4384705071 hasConcept C119857082 @default.
- W4384705071 hasConcept C12267149 @default.
- W4384705071 hasConcept C124101348 @default.
- W4384705071 hasConcept C127413603 @default.
- W4384705071 hasConcept C14036430 @default.
- W4384705071 hasConcept C149782125 @default.
- W4384705071 hasConcept C153180895 @default.
- W4384705071 hasConcept C154945302 @default.
- W4384705071 hasConcept C2776291640 @default.
- W4384705071 hasConcept C2776450708 @default.
- W4384705071 hasConcept C2780695315 @default.
- W4384705071 hasConcept C33923547 @default.
- W4384705071 hasConcept C41008148 @default.
- W4384705071 hasConcept C523214423 @default.
- W4384705071 hasConcept C73555534 @default.
- W4384705071 hasConcept C78458016 @default.
- W4384705071 hasConcept C78519656 @default.
- W4384705071 hasConcept C86803240 @default.
- W4384705071 hasConceptScore W4384705071C119857082 @default.
- W4384705071 hasConceptScore W4384705071C12267149 @default.
- W4384705071 hasConceptScore W4384705071C124101348 @default.
- W4384705071 hasConceptScore W4384705071C127413603 @default.
- W4384705071 hasConceptScore W4384705071C14036430 @default.
- W4384705071 hasConceptScore W4384705071C149782125 @default.
- W4384705071 hasConceptScore W4384705071C153180895 @default.
- W4384705071 hasConceptScore W4384705071C154945302 @default.
- W4384705071 hasConceptScore W4384705071C2776291640 @default.
- W4384705071 hasConceptScore W4384705071C2776450708 @default.
- W4384705071 hasConceptScore W4384705071C2780695315 @default.
- W4384705071 hasConceptScore W4384705071C33923547 @default.
- W4384705071 hasConceptScore W4384705071C41008148 @default.
- W4384705071 hasConceptScore W4384705071C523214423 @default.
- W4384705071 hasConceptScore W4384705071C73555534 @default.
- W4384705071 hasConceptScore W4384705071C78458016 @default.
- W4384705071 hasConceptScore W4384705071C78519656 @default.
- W4384705071 hasConceptScore W4384705071C86803240 @default.
- W4384705071 hasIssue "0" @default.
- W4384705071 hasLocation W43847050711 @default.
- W4384705071 hasOpenAccess W4384705071 @default.
- W4384705071 hasPrimaryLocation W43847050711 @default.
- W4384705071 hasRelatedWork W2041399278 @default.
- W4384705071 hasRelatedWork W2099369243 @default.
- W4384705071 hasRelatedWork W2136184105 @default.
- W4384705071 hasRelatedWork W2141705618 @default.
- W4384705071 hasRelatedWork W2153189372 @default.
- W4384705071 hasRelatedWork W2160451891 @default.
- W4384705071 hasRelatedWork W3194539120 @default.
- W4384705071 hasRelatedWork W4223656335 @default.
- W4384705071 hasRelatedWork W2187500075 @default.
- W4384705071 hasRelatedWork W2345184372 @default.
- W4384705071 hasVolume "0" @default.