Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384705430> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4384705430 abstract "The popularity of Artificial Intelligence (AI) motivates novel domain-specific hardware named AI processors. With a design trade-off, the AI processors feature incredible computation power for matrix multiplications and activations, while some leave other operations less powerful, e.g., scalar operations and vectorized comparisons & selections. For k-nearest neighbors (k-NN) algorithm, consisting of distance computation phase and k-selection phase, while the former is naturally accelerated, the previous efficient k-selection becomes problematic. Moreover, limited memory forces k-NN to adopt a mini-batch manner with tiling technique. As the distance computation’s results are the k-selection’s inputs, the former’s tiling shape determines that of the latter. Since the two phases execute on separate hardware units requiring different performance analyses, whether the former’s tiling strategies benefit the latter and entire k-NN is doubtful.To address the new challenges brought by the AI processors, this paper proposes SelB-k-NN (Selection-Bitonic-k-NN), a mini-batch algorithm inspired by selection sort and bitonic k-selection. SelB-k-NN avoids the expansion of the weakly-supported operations on the huge scale of datasets. To apply SelB-k-NN to various AI processors, we propose two algorithms to reduce the hardware support requirements. Since the matrix multiplication operates data with the specifically-designed memory hierarchy which k-selection does not share, the tiling shape of the former cannot guarantee the best execution of the latter and vice versa. By quantifying the runtime workload variations of k-selection, we formulate an optimization problem to search for the optimal tiling shapes of both phases with an offline pruning method, which reduces the search space in the preprocessing stage. Evaluations show that on Huawei Ascend 310 AI processor, SelB-k-NN achieves 2.01× speedup of the bitonic k-selection, 23.93× of the heap approach, 78.52× of the CPU approach. For mini-batch SelB-k-NN, the optimal tiling shapes for two phases respectively achieve 1.48× acceleration compared with the matrix multiplication tiling shapes and 1.14× with the k-selection tiling shapes, with 72.80% of the search space pruned." @default.
- W4384705430 created "2023-07-20" @default.
- W4384705430 creator A5022740330 @default.
- W4384705430 creator A5080045206 @default.
- W4384705430 date "2023-05-01" @default.
- W4384705430 modified "2023-10-01" @default.
- W4384705430 title "SelB-k-NN: A Mini-Batch K-Nearest Neighbors Algorithm on AI Processors" @default.
- W4384705430 cites W1506582611 @default.
- W4384705430 cites W2009498843 @default.
- W4384705430 cites W2010818132 @default.
- W4384705430 cites W2028960610 @default.
- W4384705430 cites W2106692105 @default.
- W4384705430 cites W2123895705 @default.
- W4384705430 cites W2515287984 @default.
- W4384705430 cites W2540279855 @default.
- W4384705430 cites W2606722458 @default.
- W4384705430 cites W2798445803 @default.
- W4384705430 cites W2895162358 @default.
- W4384705430 cites W2912012512 @default.
- W4384705430 cites W2913790721 @default.
- W4384705430 cites W2914631005 @default.
- W4384705430 cites W2963989532 @default.
- W4384705430 cites W2982219368 @default.
- W4384705430 cites W2998702515 @default.
- W4384705430 cites W3043303806 @default.
- W4384705430 cites W3098996042 @default.
- W4384705430 cites W3104528661 @default.
- W4384705430 cites W3104745751 @default.
- W4384705430 cites W3130554079 @default.
- W4384705430 cites W3132532188 @default.
- W4384705430 cites W3169762706 @default.
- W4384705430 cites W3203078652 @default.
- W4384705430 cites W4220912491 @default.
- W4384705430 doi "https://doi.org/10.1109/ipdps54959.2023.00088" @default.
- W4384705430 hasPublicationYear "2023" @default.
- W4384705430 type Work @default.
- W4384705430 citedByCount "0" @default.
- W4384705430 crossrefType "proceedings-article" @default.
- W4384705430 hasAuthorship W4384705430A5022740330 @default.
- W4384705430 hasAuthorship W4384705430A5080045206 @default.
- W4384705430 hasConcept C11413529 @default.
- W4384705430 hasConcept C121332964 @default.
- W4384705430 hasConcept C154945302 @default.
- W4384705430 hasConcept C17349429 @default.
- W4384705430 hasConcept C173608175 @default.
- W4384705430 hasConcept C41008148 @default.
- W4384705430 hasConcept C45374587 @default.
- W4384705430 hasConcept C62520636 @default.
- W4384705430 hasConcept C81917197 @default.
- W4384705430 hasConcept C84114770 @default.
- W4384705430 hasConceptScore W4384705430C11413529 @default.
- W4384705430 hasConceptScore W4384705430C121332964 @default.
- W4384705430 hasConceptScore W4384705430C154945302 @default.
- W4384705430 hasConceptScore W4384705430C17349429 @default.
- W4384705430 hasConceptScore W4384705430C173608175 @default.
- W4384705430 hasConceptScore W4384705430C41008148 @default.
- W4384705430 hasConceptScore W4384705430C45374587 @default.
- W4384705430 hasConceptScore W4384705430C62520636 @default.
- W4384705430 hasConceptScore W4384705430C81917197 @default.
- W4384705430 hasConceptScore W4384705430C84114770 @default.
- W4384705430 hasLocation W43847054301 @default.
- W4384705430 hasOpenAccess W4384705430 @default.
- W4384705430 hasPrimaryLocation W43847054301 @default.
- W4384705430 hasRelatedWork W1543798151 @default.
- W4384705430 hasRelatedWork W1572523360 @default.
- W4384705430 hasRelatedWork W1832263773 @default.
- W4384705430 hasRelatedWork W2106792682 @default.
- W4384705430 hasRelatedWork W2153237593 @default.
- W4384705430 hasRelatedWork W2184339052 @default.
- W4384705430 hasRelatedWork W2292897598 @default.
- W4384705430 hasRelatedWork W2368435077 @default.
- W4384705430 hasRelatedWork W2791204867 @default.
- W4384705430 hasRelatedWork W2622518229 @default.
- W4384705430 isParatext "false" @default.
- W4384705430 isRetracted "false" @default.
- W4384705430 workType "article" @default.