Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384788405> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4384788405 endingPage "2010" @default.
- W4384788405 startingPage "2005" @default.
- W4384788405 abstract "Process design is a creative task that is currently performed manually by engineers. Artificial intelligence provides new potential to facilitate process design. Specifically, reinforcement learning (RL) has shown some success in automating process design by integrating data-driven models that learn to build process flowsheets with process simulation in an iterative design process. However, one major challenge in the learning process is that the RL agent demands numerous process simulations in rigorous process simulators, thereby requiring long simulation times and expensive computational power. Therefore, typically short-cut simulation methods are employed to accelerate the learning process. Short-cut methods can, however, lead to inaccurate results. We thus propose to utilize transfer learning for process design with RL in combination with rigorous simulation methods. Transfer learning is an established approach from machine learning that stores knowledge gained while solving one problem and reuses this information on a different target domain. We integrate transfer learning in our RL framework for process design and apply it to an illustrative case study comprising equilibrium reactions, azeotropic separation, and recycles, our method can design economically feasible flowsheets with stable interaction with DWSIM. Our results show that transfer learning enables RL to economically design feasible flowsheets with DWSIM, resulting in a flowsheet with an 8% higher revenue. And the learning time can be reduced by a factor of 2." @default.
- W4384788405 created "2023-07-20" @default.
- W4384788405 creator A5014444917 @default.
- W4384788405 creator A5024463249 @default.
- W4384788405 creator A5041100944 @default.
- W4384788405 creator A5085291703 @default.
- W4384788405 date "2023-01-01" @default.
- W4384788405 modified "2023-10-06" @default.
- W4384788405 title "Transfer learning for process design with reinforcement learning" @default.
- W4384788405 cites W1980005148 @default.
- W4384788405 cites W2026895614 @default.
- W4384788405 cites W2566177414 @default.
- W4384788405 cites W2789841081 @default.
- W4384788405 cites W3042408539 @default.
- W4384788405 cites W3160918432 @default.
- W4384788405 cites W3207230342 @default.
- W4384788405 doi "https://doi.org/10.1016/b978-0-443-15274-0.50319-x" @default.
- W4384788405 hasPublicationYear "2023" @default.
- W4384788405 type Work @default.
- W4384788405 citedByCount "1" @default.
- W4384788405 countsByYear W43847884052023 @default.
- W4384788405 crossrefType "book-chapter" @default.
- W4384788405 hasAuthorship W4384788405A5014444917 @default.
- W4384788405 hasAuthorship W4384788405A5024463249 @default.
- W4384788405 hasAuthorship W4384788405A5041100944 @default.
- W4384788405 hasAuthorship W4384788405A5085291703 @default.
- W4384788405 hasConcept C111919701 @default.
- W4384788405 hasConcept C119857082 @default.
- W4384788405 hasConcept C127413603 @default.
- W4384788405 hasConcept C150899416 @default.
- W4384788405 hasConcept C154945302 @default.
- W4384788405 hasConcept C174998907 @default.
- W4384788405 hasConcept C201995342 @default.
- W4384788405 hasConcept C21547014 @default.
- W4384788405 hasConcept C2780451532 @default.
- W4384788405 hasConcept C34972735 @default.
- W4384788405 hasConcept C41008148 @default.
- W4384788405 hasConcept C48262172 @default.
- W4384788405 hasConcept C55396564 @default.
- W4384788405 hasConcept C78519656 @default.
- W4384788405 hasConcept C97541855 @default.
- W4384788405 hasConcept C98045186 @default.
- W4384788405 hasConceptScore W4384788405C111919701 @default.
- W4384788405 hasConceptScore W4384788405C119857082 @default.
- W4384788405 hasConceptScore W4384788405C127413603 @default.
- W4384788405 hasConceptScore W4384788405C150899416 @default.
- W4384788405 hasConceptScore W4384788405C154945302 @default.
- W4384788405 hasConceptScore W4384788405C174998907 @default.
- W4384788405 hasConceptScore W4384788405C201995342 @default.
- W4384788405 hasConceptScore W4384788405C21547014 @default.
- W4384788405 hasConceptScore W4384788405C2780451532 @default.
- W4384788405 hasConceptScore W4384788405C34972735 @default.
- W4384788405 hasConceptScore W4384788405C41008148 @default.
- W4384788405 hasConceptScore W4384788405C48262172 @default.
- W4384788405 hasConceptScore W4384788405C55396564 @default.
- W4384788405 hasConceptScore W4384788405C78519656 @default.
- W4384788405 hasConceptScore W4384788405C97541855 @default.
- W4384788405 hasConceptScore W4384788405C98045186 @default.
- W4384788405 hasLocation W43847884051 @default.
- W4384788405 hasOpenAccess W4384788405 @default.
- W4384788405 hasPrimaryLocation W43847884051 @default.
- W4384788405 hasRelatedWork W2012496280 @default.
- W4384788405 hasRelatedWork W2101430679 @default.
- W4384788405 hasRelatedWork W2748779676 @default.
- W4384788405 hasRelatedWork W275133101 @default.
- W4384788405 hasRelatedWork W2960456850 @default.
- W4384788405 hasRelatedWork W4239963300 @default.
- W4384788405 hasRelatedWork W4283016592 @default.
- W4384788405 hasRelatedWork W4308262314 @default.
- W4384788405 hasRelatedWork W4319083788 @default.
- W4384788405 hasRelatedWork W4382286161 @default.
- W4384788405 isParatext "false" @default.
- W4384788405 isRetracted "false" @default.
- W4384788405 workType "book-chapter" @default.