Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384807922> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4384807922 abstract "We consider the problem of identifying a maximum clique in a given graph. We have proposed a mathematical model for this problem. The model resembles the matrix decomposition of the adjacency matrix of a given graph. The objective function of the mathematical model includes a weighted $ell_{1}$-norm of the sparse matrix of the decomposition, which has an advantage over the known $ell_{1}-$norm in reducing the error. The use of dynamically changing the weights for the $ell_{1}$-norm has been motivated. We have used proximal operators within the iterates of the ADMM (alternating direction method of multipliers) algorithm to solve the optimization problem. Convergence of the proposed ADMM algorithm has been provided. The theoretical guarantee of the maximum clique in the form of the low-rank matrix has also been established using the golfing scheme to construct approximate dual certificates. We have constructed conditions that guarantee the recovery and uniqueness of the solution, as well as a tight bound on the dual matrix that validates optimality conditions. Numerical results for planted cliques are presented showing clear advantages of our model when compared with two recent mathematical models. Results are also presented for randomly generated graphs with minimal errors. These errors are found using a formula we have proposed based on the size of the clique. Moreover, we have applied our algorithm to real-world graphs for which cliques have been recovered successfully. The validity of these clique sizes comes from the decomposition of input graph into a rank-one matrix (corresponds to the clique) and a sparse matrix." @default.
- W4384807922 created "2023-07-20" @default.
- W4384807922 creator A5008314297 @default.
- W4384807922 creator A5045114052 @default.
- W4384807922 date "2023-07-18" @default.
- W4384807922 modified "2023-09-26" @default.
- W4384807922 title "Harnessing the mathematics of matrix decomposition to solve planted and maximum clique problem" @default.
- W4384807922 doi "https://doi.org/10.48550/arxiv.2307.09022" @default.
- W4384807922 hasPublicationYear "2023" @default.
- W4384807922 type Work @default.
- W4384807922 citedByCount "0" @default.
- W4384807922 crossrefType "posted-content" @default.
- W4384807922 hasAuthorship W4384807922A5008314297 @default.
- W4384807922 hasAuthorship W4384807922A5045114052 @default.
- W4384807922 hasBestOaLocation W43848079221 @default.
- W4384807922 hasConcept C106487976 @default.
- W4384807922 hasConcept C11413529 @default.
- W4384807922 hasConcept C114614502 @default.
- W4384807922 hasConcept C118615104 @default.
- W4384807922 hasConcept C126255220 @default.
- W4384807922 hasConcept C132525143 @default.
- W4384807922 hasConcept C134306372 @default.
- W4384807922 hasConcept C150997102 @default.
- W4384807922 hasConcept C159985019 @default.
- W4384807922 hasConcept C165526019 @default.
- W4384807922 hasConcept C180356752 @default.
- W4384807922 hasConcept C192562407 @default.
- W4384807922 hasConcept C203776342 @default.
- W4384807922 hasConcept C2777021972 @default.
- W4384807922 hasConcept C2777035058 @default.
- W4384807922 hasConcept C33923547 @default.
- W4384807922 hasConcept C43517604 @default.
- W4384807922 hasConceptScore W4384807922C106487976 @default.
- W4384807922 hasConceptScore W4384807922C11413529 @default.
- W4384807922 hasConceptScore W4384807922C114614502 @default.
- W4384807922 hasConceptScore W4384807922C118615104 @default.
- W4384807922 hasConceptScore W4384807922C126255220 @default.
- W4384807922 hasConceptScore W4384807922C132525143 @default.
- W4384807922 hasConceptScore W4384807922C134306372 @default.
- W4384807922 hasConceptScore W4384807922C150997102 @default.
- W4384807922 hasConceptScore W4384807922C159985019 @default.
- W4384807922 hasConceptScore W4384807922C165526019 @default.
- W4384807922 hasConceptScore W4384807922C180356752 @default.
- W4384807922 hasConceptScore W4384807922C192562407 @default.
- W4384807922 hasConceptScore W4384807922C203776342 @default.
- W4384807922 hasConceptScore W4384807922C2777021972 @default.
- W4384807922 hasConceptScore W4384807922C2777035058 @default.
- W4384807922 hasConceptScore W4384807922C33923547 @default.
- W4384807922 hasConceptScore W4384807922C43517604 @default.
- W4384807922 hasLocation W43848079221 @default.
- W4384807922 hasOpenAccess W4384807922 @default.
- W4384807922 hasPrimaryLocation W43848079221 @default.
- W4384807922 hasRelatedWork W2021102038 @default.
- W4384807922 hasRelatedWork W2039582986 @default.
- W4384807922 hasRelatedWork W2143000384 @default.
- W4384807922 hasRelatedWork W2186006531 @default.
- W4384807922 hasRelatedWork W2891041771 @default.
- W4384807922 hasRelatedWork W3164101730 @default.
- W4384807922 hasRelatedWork W4225966317 @default.
- W4384807922 hasRelatedWork W4231130864 @default.
- W4384807922 hasRelatedWork W4280510305 @default.
- W4384807922 hasRelatedWork W4319602674 @default.
- W4384807922 isParatext "false" @default.
- W4384807922 isRetracted "false" @default.
- W4384807922 workType "article" @default.