Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384820146> ?p ?o ?g. }
- W4384820146 abstract "Chaos and turbulence are complex physical phenomena, yet a precise definition of the complexity measure that quantifies them is still lacking. In this work we consider the relative complexity of chaos and turbulence from the perspective of deep neural networks. We analyze a set of classification problems, where the network has to distinguish images of fluid profiles in the turbulent regime from other classes of images such as fluid profiles in the chaotic regime, various constructions of noise and real world images. We analyze incompressible as well as weakly compressible fluid flows. We quantify the complexity of the computation performed by the network via the intrinsic dimensionality of the internal feature representations, and calculate the effective number of independent features which the network uses in order to distinguish between classes. In addition to providing a numerical estimate of the complexity of the computation, the measure also characterizes the neural network processing at intermediate and final stages. We construct adversarial examples and use them to identify the two point correlation spectra for the chaotic and turbulent vorticity as the feature used by the network for classification." @default.
- W4384820146 created "2023-07-21" @default.
- W4384820146 creator A5005360706 @default.
- W4384820146 creator A5027270988 @default.
- W4384820146 creator A5059447185 @default.
- W4384820146 date "2023-07-01" @default.
- W4384820146 modified "2023-10-18" @default.
- W4384820146 title "Neural network complexity of chaos and turbulence" @default.
- W4384820146 cites W1676010385 @default.
- W4384820146 cites W1787224781 @default.
- W4384820146 cites W1791800591 @default.
- W4384820146 cites W1983663209 @default.
- W4384820146 cites W1993056331 @default.
- W4384820146 cites W2011301426 @default.
- W4384820146 cites W2011959252 @default.
- W4384820146 cites W2018392515 @default.
- W4384820146 cites W2038054616 @default.
- W4384820146 cites W2050962398 @default.
- W4384820146 cites W2088322025 @default.
- W4384820146 cites W2107240173 @default.
- W4384820146 cites W2117539524 @default.
- W4384820146 cites W2123124652 @default.
- W4384820146 cites W2147335347 @default.
- W4384820146 cites W2194775991 @default.
- W4384820146 cites W2282821441 @default.
- W4384820146 cites W2594475271 @default.
- W4384820146 cites W2693472816 @default.
- W4384820146 cites W2795982117 @default.
- W4384820146 cites W2799011959 @default.
- W4384820146 cites W2892666903 @default.
- W4384820146 cites W2902480423 @default.
- W4384820146 cites W2911764773 @default.
- W4384820146 cites W2922301641 @default.
- W4384820146 cites W2990516186 @default.
- W4384820146 cites W2996439688 @default.
- W4384820146 cites W3018098279 @default.
- W4384820146 cites W3034554370 @default.
- W4384820146 cites W3035733053 @default.
- W4384820146 cites W3096832029 @default.
- W4384820146 cites W3101978617 @default.
- W4384820146 cites W3102140816 @default.
- W4384820146 cites W3120515765 @default.
- W4384820146 cites W3127875018 @default.
- W4384820146 cites W3134626437 @default.
- W4384820146 cites W4220750585 @default.
- W4384820146 cites W4221011222 @default.
- W4384820146 cites W4243066586 @default.
- W4384820146 cites W4287760763 @default.
- W4384820146 cites W4289433311 @default.
- W4384820146 cites W4293580221 @default.
- W4384820146 cites W4297056776 @default.
- W4384820146 cites W4313396509 @default.
- W4384820146 cites W4318978575 @default.
- W4384820146 cites W4367671808 @default.
- W4384820146 cites W2737490363 @default.
- W4384820146 cites W3105929677 @default.
- W4384820146 doi "https://doi.org/10.1140/epje/s10189-023-00321-7" @default.
- W4384820146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37470886" @default.
- W4384820146 hasPublicationYear "2023" @default.
- W4384820146 type Work @default.
- W4384820146 citedByCount "0" @default.
- W4384820146 crossrefType "journal-article" @default.
- W4384820146 hasAuthorship W4384820146A5005360706 @default.
- W4384820146 hasAuthorship W4384820146A5027270988 @default.
- W4384820146 hasAuthorship W4384820146A5059447185 @default.
- W4384820146 hasBestOaLocation W43848201462 @default.
- W4384820146 hasConcept C111030470 @default.
- W4384820146 hasConcept C11413529 @default.
- W4384820146 hasConcept C121332964 @default.
- W4384820146 hasConcept C121864883 @default.
- W4384820146 hasConcept C124101348 @default.
- W4384820146 hasConcept C154945302 @default.
- W4384820146 hasConcept C196558001 @default.
- W4384820146 hasConcept C2777052490 @default.
- W4384820146 hasConcept C2780009758 @default.
- W4384820146 hasConcept C41008148 @default.
- W4384820146 hasConcept C45374587 @default.
- W4384820146 hasConcept C50644808 @default.
- W4384820146 hasConcept C57879066 @default.
- W4384820146 hasConcept C80444323 @default.
- W4384820146 hasConceptScore W4384820146C111030470 @default.
- W4384820146 hasConceptScore W4384820146C11413529 @default.
- W4384820146 hasConceptScore W4384820146C121332964 @default.
- W4384820146 hasConceptScore W4384820146C121864883 @default.
- W4384820146 hasConceptScore W4384820146C124101348 @default.
- W4384820146 hasConceptScore W4384820146C154945302 @default.
- W4384820146 hasConceptScore W4384820146C196558001 @default.
- W4384820146 hasConceptScore W4384820146C2777052490 @default.
- W4384820146 hasConceptScore W4384820146C2780009758 @default.
- W4384820146 hasConceptScore W4384820146C41008148 @default.
- W4384820146 hasConceptScore W4384820146C45374587 @default.
- W4384820146 hasConceptScore W4384820146C50644808 @default.
- W4384820146 hasConceptScore W4384820146C57879066 @default.
- W4384820146 hasConceptScore W4384820146C80444323 @default.
- W4384820146 hasIssue "7" @default.
- W4384820146 hasLocation W43848201461 @default.
- W4384820146 hasLocation W43848201462 @default.
- W4384820146 hasLocation W43848201463 @default.
- W4384820146 hasOpenAccess W4384820146 @default.
- W4384820146 hasPrimaryLocation W43848201461 @default.