Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384820162> ?p ?o ?g. }
- W4384820162 abstract "The identification of human proteins that are amenable to pharmacologic modulation without significant off-target effects remains an important unsolved challenge. Computational methods have been devised to identify features which distinguish between druggable and undruggable proteins, finding that protein sequence, tissue and cellular localization, biological role, and position in the protein-protein interaction network are all important discriminant factors. However, many prior efforts to automate the assessment of protein druggability suffer from low performance or poor interpretability. We developed a neural network-based machine learning model capable of generating druggability sub-scores based on each of four distinct categories, combining them to form an overall druggability score. The model achieves an excellent performance in separating drugged and undrugged proteins in the human proteome, with an area under the receiver operating characteristic (AUC) of 0.95. Our use of multiple sub-scores allows the assessment of potential protein targets of interest based on distinct contributors to druggability, leading to a more interpretable and holistic model to identify novel targets." @default.
- W4384820162 created "2023-07-21" @default.
- W4384820162 creator A5013266798 @default.
- W4384820162 creator A5052371425 @default.
- W4384820162 creator A5069567920 @default.
- W4384820162 creator A5070503646 @default.
- W4384820162 creator A5074100212 @default.
- W4384820162 creator A5075168489 @default.
- W4384820162 date "2023-07-19" @default.
- W4384820162 modified "2023-10-14" @default.
- W4384820162 title "PINNED: identifying characteristics of druggable human proteins using an interpretable neural network" @default.
- W4384820162 cites W1978257492 @default.
- W4384820162 cites W2012034410 @default.
- W4384820162 cites W2021704663 @default.
- W4384820162 cites W2031912356 @default.
- W4384820162 cites W2040703580 @default.
- W4384820162 cites W2042586732 @default.
- W4384820162 cites W2081837827 @default.
- W4384820162 cites W2082032299 @default.
- W4384820162 cites W2089226872 @default.
- W4384820162 cites W2091516551 @default.
- W4384820162 cites W2097289205 @default.
- W4384820162 cites W2103017472 @default.
- W4384820162 cites W2107247090 @default.
- W4384820162 cites W2132820240 @default.
- W4384820162 cites W2133776184 @default.
- W4384820162 cites W2145957695 @default.
- W4384820162 cites W2157177751 @default.
- W4384820162 cites W2164088236 @default.
- W4384820162 cites W2198001326 @default.
- W4384820162 cites W2252158617 @default.
- W4384820162 cites W2547330766 @default.
- W4384820162 cites W2619634539 @default.
- W4384820162 cites W2623587811 @default.
- W4384820162 cites W2753633147 @default.
- W4384820162 cites W2761275051 @default.
- W4384820162 cites W2778669316 @default.
- W4384820162 cites W2793168264 @default.
- W4384820162 cites W2900569176 @default.
- W4384820162 cites W2901019624 @default.
- W4384820162 cites W2901421968 @default.
- W4384820162 cites W2950704620 @default.
- W4384820162 cites W2953799871 @default.
- W4384820162 cites W2963647449 @default.
- W4384820162 cites W3009999522 @default.
- W4384820162 cites W3011200991 @default.
- W4384820162 cites W3038540837 @default.
- W4384820162 cites W3094762523 @default.
- W4384820162 cites W3100444062 @default.
- W4384820162 cites W3177828909 @default.
- W4384820162 cites W3208999135 @default.
- W4384820162 cites W3210331473 @default.
- W4384820162 cites W3210558381 @default.
- W4384820162 cites W3216080986 @default.
- W4384820162 cites W4220900187 @default.
- W4384820162 cites W4242716081 @default.
- W4384820162 cites W4289861331 @default.
- W4384820162 cites W4309306035 @default.
- W4384820162 cites W4310057196 @default.
- W4384820162 doi "https://doi.org/10.1186/s13321-023-00735-7" @default.
- W4384820162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37468968" @default.
- W4384820162 hasPublicationYear "2023" @default.
- W4384820162 type Work @default.
- W4384820162 citedByCount "0" @default.
- W4384820162 crossrefType "journal-article" @default.
- W4384820162 hasAuthorship W4384820162A5013266798 @default.
- W4384820162 hasAuthorship W4384820162A5052371425 @default.
- W4384820162 hasAuthorship W4384820162A5069567920 @default.
- W4384820162 hasAuthorship W4384820162A5070503646 @default.
- W4384820162 hasAuthorship W4384820162A5074100212 @default.
- W4384820162 hasAuthorship W4384820162A5075168489 @default.
- W4384820162 hasBestOaLocation W43848201621 @default.
- W4384820162 hasConcept C104317684 @default.
- W4384820162 hasConcept C104397665 @default.
- W4384820162 hasConcept C10679952 @default.
- W4384820162 hasConcept C116834253 @default.
- W4384820162 hasConcept C119857082 @default.
- W4384820162 hasConcept C124101348 @default.
- W4384820162 hasConcept C154945302 @default.
- W4384820162 hasConcept C2781067378 @default.
- W4384820162 hasConcept C41008148 @default.
- W4384820162 hasConcept C46111723 @default.
- W4384820162 hasConcept C50644808 @default.
- W4384820162 hasConcept C54355233 @default.
- W4384820162 hasConcept C59822182 @default.
- W4384820162 hasConcept C60644358 @default.
- W4384820162 hasConcept C70721500 @default.
- W4384820162 hasConcept C86803240 @default.
- W4384820162 hasConcept C94795543 @default.
- W4384820162 hasConceptScore W4384820162C104317684 @default.
- W4384820162 hasConceptScore W4384820162C104397665 @default.
- W4384820162 hasConceptScore W4384820162C10679952 @default.
- W4384820162 hasConceptScore W4384820162C116834253 @default.
- W4384820162 hasConceptScore W4384820162C119857082 @default.
- W4384820162 hasConceptScore W4384820162C124101348 @default.
- W4384820162 hasConceptScore W4384820162C154945302 @default.
- W4384820162 hasConceptScore W4384820162C2781067378 @default.
- W4384820162 hasConceptScore W4384820162C41008148 @default.
- W4384820162 hasConceptScore W4384820162C46111723 @default.
- W4384820162 hasConceptScore W4384820162C50644808 @default.