Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384825262> ?p ?o ?g. }
- W4384825262 endingPage "8289" @default.
- W4384825262 startingPage "8289" @default.
- W4384825262 abstract "Vegetation plays an active role in ecosystem dynamics, and monitoring its patterns and changes is vital for effective environmental resource management. This study explores the possibility of machine learning techniques and remote sensing data to improve the accuracy of forest detection. The research focuses on the southeastern part of the Republic of Serbia as a case study area, using Sentinel-2 multispectral bands. The study employs publicly accessible satellite data and incorporates different vegetation indices to improve classification accuracy. The main objective is to examine the practicability of expanding the input parameters for forest detection using a machine learning approach. The classification process is performed by employing support vector machines (SVM) algorithm and utilising the SVM module in the scikit-learn package. The results demonstrate that including vegetation indices alongside the multispectral bands significantly improves the accuracy of vegetation detection. A comprehensive assessment reveals an overall classification accuracy of up to 99.01% when the selected vegetation indices (MCARI, RENDVI, NDI45, GNDVI, NDII) are combined with the Sentinel-2 bands. This research highlights the potential of machine learning and remote sensing in forest detection and monitoring. The findings underscore the importance of incorporating vegetation indices to enhance classification accuracy using the Python programming language. The study’s outcomes provide valuable insights for environmental resource management and decision-making processes, particularly in regions with diverse forest ecosystems." @default.
- W4384825262 created "2023-07-21" @default.
- W4384825262 creator A5002237892 @default.
- W4384825262 creator A5013617220 @default.
- W4384825262 creator A5021463304 @default.
- W4384825262 creator A5032363918 @default.
- W4384825262 creator A5047887430 @default.
- W4384825262 creator A5062714788 @default.
- W4384825262 creator A5085381569 @default.
- W4384825262 date "2023-07-18" @default.
- W4384825262 modified "2023-09-29" @default.
- W4384825262 title "Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia" @default.
- W4384825262 cites W1488309124 @default.
- W4384825262 cites W1964217023 @default.
- W4384825262 cites W1978815957 @default.
- W4384825262 cites W1980595709 @default.
- W4384825262 cites W1997280160 @default.
- W4384825262 cites W2000102737 @default.
- W4384825262 cites W2000613913 @default.
- W4384825262 cites W2005270253 @default.
- W4384825262 cites W2013933130 @default.
- W4384825262 cites W2027249140 @default.
- W4384825262 cites W2039604550 @default.
- W4384825262 cites W2042585542 @default.
- W4384825262 cites W2048763583 @default.
- W4384825262 cites W2054010562 @default.
- W4384825262 cites W2077707413 @default.
- W4384825262 cites W2080441468 @default.
- W4384825262 cites W2086620533 @default.
- W4384825262 cites W2087463450 @default.
- W4384825262 cites W2095574493 @default.
- W4384825262 cites W2096352448 @default.
- W4384825262 cites W2098247895 @default.
- W4384825262 cites W2111947859 @default.
- W4384825262 cites W2118921056 @default.
- W4384825262 cites W2128438912 @default.
- W4384825262 cites W2153635508 @default.
- W4384825262 cites W2550139446 @default.
- W4384825262 cites W2560901046 @default.
- W4384825262 cites W2562170591 @default.
- W4384825262 cites W2567101495 @default.
- W4384825262 cites W2600714602 @default.
- W4384825262 cites W2802971269 @default.
- W4384825262 cites W2871665063 @default.
- W4384825262 cites W2901857397 @default.
- W4384825262 cites W2906300491 @default.
- W4384825262 cites W2909099826 @default.
- W4384825262 cites W2915626801 @default.
- W4384825262 cites W2953011380 @default.
- W4384825262 cites W2962723135 @default.
- W4384825262 cites W2966048283 @default.
- W4384825262 cites W2971154085 @default.
- W4384825262 cites W2992764683 @default.
- W4384825262 cites W3011784078 @default.
- W4384825262 cites W3030419021 @default.
- W4384825262 cites W3044853528 @default.
- W4384825262 cites W3099878876 @default.
- W4384825262 cites W3100733145 @default.
- W4384825262 cites W3121842289 @default.
- W4384825262 cites W3122191690 @default.
- W4384825262 cites W3126087996 @default.
- W4384825262 cites W3157845428 @default.
- W4384825262 cites W3164779063 @default.
- W4384825262 cites W3183877718 @default.
- W4384825262 cites W3198350258 @default.
- W4384825262 cites W3217696356 @default.
- W4384825262 cites W4200449572 @default.
- W4384825262 cites W4212932233 @default.
- W4384825262 cites W4213113494 @default.
- W4384825262 cites W4213124617 @default.
- W4384825262 cites W4224271852 @default.
- W4384825262 cites W4239510810 @default.
- W4384825262 cites W4281560664 @default.
- W4384825262 cites W4281743276 @default.
- W4384825262 cites W4288040807 @default.
- W4384825262 cites W4291909880 @default.
- W4384825262 cites W4294762684 @default.
- W4384825262 cites W4297175306 @default.
- W4384825262 cites W4311689521 @default.
- W4384825262 cites W4313343845 @default.
- W4384825262 cites W4323308876 @default.
- W4384825262 doi "https://doi.org/10.3390/app13148289" @default.
- W4384825262 hasPublicationYear "2023" @default.
- W4384825262 type Work @default.
- W4384825262 citedByCount "1" @default.
- W4384825262 countsByYear W43848252622023 @default.
- W4384825262 crossrefType "journal-article" @default.
- W4384825262 hasAuthorship W4384825262A5002237892 @default.
- W4384825262 hasAuthorship W4384825262A5013617220 @default.
- W4384825262 hasAuthorship W4384825262A5021463304 @default.
- W4384825262 hasAuthorship W4384825262A5032363918 @default.
- W4384825262 hasAuthorship W4384825262A5047887430 @default.
- W4384825262 hasAuthorship W4384825262A5062714788 @default.
- W4384825262 hasAuthorship W4384825262A5085381569 @default.
- W4384825262 hasBestOaLocation W43848252621 @default.
- W4384825262 hasConcept C119857082 @default.
- W4384825262 hasConcept C12267149 @default.
- W4384825262 hasConcept C142724271 @default.