Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384825512> ?p ?o ?g. }
- W4384825512 endingPage "8285" @default.
- W4384825512 startingPage "8285" @default.
- W4384825512 abstract "A comparative methodology between advanced statistical tools and physical-based methods is carried out to ensure their reliability and objectivity for the evaluation of co-seismic landslide hazard maps. To do this, an inventory of landslides induced by the 2011 Lorca earthquake is used to highlight the usefulness of these methods to improve earthquake-induced landslide hazard analyses. Various statistical models, such as logistic regression, random forest, artificial neural network, and support vector machine, have been employed for co-seismic landslide susceptibility mapping. The results demonstrate that machine learning techniques using principal components (especially, artificial neural network and support vector machine) yield better results compared to other models. In particular, random forest shows poor results. Artificial neural network and support vector machine approaches are compared to the results of physical-based methods in the same area, suggesting that machine learning methods can provide better results for developing co-seismic landslide susceptibility maps. The application of different advanced statistical models shows the need for validation with an actual inventory of co-seismic landslides to ensure reliability and objectivity. In addition, statistical methods require a great amount of data. The results establish effective land planning and hazard management strategies in seismic areas to minimize the damage of future co-seismic landslides." @default.
- W4384825512 created "2023-07-21" @default.
- W4384825512 creator A5009701707 @default.
- W4384825512 creator A5021561339 @default.
- W4384825512 creator A5053671338 @default.
- W4384825512 date "2023-07-18" @default.
- W4384825512 modified "2023-10-18" @default.
- W4384825512 title "Comparison between Machine Learning and Physical Models Applied to the Evaluation of Co-Seismic Landslide Hazard" @default.
- W4384825512 cites W1565173574 @default.
- W4384825512 cites W1678356000 @default.
- W4384825512 cites W1700449338 @default.
- W4384825512 cites W1969380526 @default.
- W4384825512 cites W1969477520 @default.
- W4384825512 cites W1972476110 @default.
- W4384825512 cites W1982623886 @default.
- W4384825512 cites W1983676031 @default.
- W4384825512 cites W2017337590 @default.
- W4384825512 cites W2020958068 @default.
- W4384825512 cites W2024060531 @default.
- W4384825512 cites W2027411486 @default.
- W4384825512 cites W2031220322 @default.
- W4384825512 cites W2051208952 @default.
- W4384825512 cites W2052493666 @default.
- W4384825512 cites W2063978378 @default.
- W4384825512 cites W2068046269 @default.
- W4384825512 cites W2083928177 @default.
- W4384825512 cites W2139479705 @default.
- W4384825512 cites W2143426320 @default.
- W4384825512 cites W2150355110 @default.
- W4384825512 cites W2166095666 @default.
- W4384825512 cites W2236234032 @default.
- W4384825512 cites W2316089106 @default.
- W4384825512 cites W2532612331 @default.
- W4384825512 cites W2793729791 @default.
- W4384825512 cites W2900873193 @default.
- W4384825512 cites W2969669562 @default.
- W4384825512 cites W2971741962 @default.
- W4384825512 cites W2979543333 @default.
- W4384825512 cites W2999015335 @default.
- W4384825512 cites W3016556330 @default.
- W4384825512 cites W3032213921 @default.
- W4384825512 cites W3036885790 @default.
- W4384825512 cites W3040706182 @default.
- W4384825512 cites W3080303574 @default.
- W4384825512 cites W3112910292 @default.
- W4384825512 cites W3159337390 @default.
- W4384825512 cites W3194762287 @default.
- W4384825512 cites W3199346347 @default.
- W4384825512 cites W4212883601 @default.
- W4384825512 cites W4214741445 @default.
- W4384825512 cites W4236137412 @default.
- W4384825512 cites W4239510810 @default.
- W4384825512 cites W4250503569 @default.
- W4384825512 cites W4282006100 @default.
- W4384825512 cites W4282937013 @default.
- W4384825512 cites W429766147 @default.
- W4384825512 cites W4322743724 @default.
- W4384825512 cites W4377012571 @default.
- W4384825512 cites W4381543960 @default.
- W4384825512 cites W4381661839 @default.
- W4384825512 doi "https://doi.org/10.3390/app13148285" @default.
- W4384825512 hasPublicationYear "2023" @default.
- W4384825512 type Work @default.
- W4384825512 citedByCount "0" @default.
- W4384825512 crossrefType "journal-article" @default.
- W4384825512 hasAuthorship W4384825512A5009701707 @default.
- W4384825512 hasAuthorship W4384825512A5021561339 @default.
- W4384825512 hasAuthorship W4384825512A5053671338 @default.
- W4384825512 hasBestOaLocation W43848255121 @default.
- W4384825512 hasConcept C119857082 @default.
- W4384825512 hasConcept C121332964 @default.
- W4384825512 hasConcept C12267149 @default.
- W4384825512 hasConcept C124101348 @default.
- W4384825512 hasConcept C127313418 @default.
- W4384825512 hasConcept C151956035 @default.
- W4384825512 hasConcept C154945302 @default.
- W4384825512 hasConcept C163258240 @default.
- W4384825512 hasConcept C165205528 @default.
- W4384825512 hasConcept C169258074 @default.
- W4384825512 hasConcept C178790620 @default.
- W4384825512 hasConcept C185592680 @default.
- W4384825512 hasConcept C186295008 @default.
- W4384825512 hasConcept C41008148 @default.
- W4384825512 hasConcept C43214815 @default.
- W4384825512 hasConcept C49261128 @default.
- W4384825512 hasConcept C50644808 @default.
- W4384825512 hasConcept C62520636 @default.
- W4384825512 hasConcept C69361100 @default.
- W4384825512 hasConceptScore W4384825512C119857082 @default.
- W4384825512 hasConceptScore W4384825512C121332964 @default.
- W4384825512 hasConceptScore W4384825512C12267149 @default.
- W4384825512 hasConceptScore W4384825512C124101348 @default.
- W4384825512 hasConceptScore W4384825512C127313418 @default.
- W4384825512 hasConceptScore W4384825512C151956035 @default.
- W4384825512 hasConceptScore W4384825512C154945302 @default.
- W4384825512 hasConceptScore W4384825512C163258240 @default.
- W4384825512 hasConceptScore W4384825512C165205528 @default.
- W4384825512 hasConceptScore W4384825512C169258074 @default.