Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384825535> ?p ?o ?g. }
- W4384825535 endingPage "3153" @default.
- W4384825535 startingPage "3153" @default.
- W4384825535 abstract "Success in student learning is the primary aim of the educational system. Artificial intelligence utilizes data and machine learning to achieve excellence in student learning. In this paper, we exploit several machine learning techniques to estimate early student performance. Two main simulations are used for the evaluation. The first simulation used the Traditional Machine Learning Classifiers (TMLCs) applied to the House dataset, and they are Gaussian Naïve Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), Multi-Layer Perceptron (MLP), Random Forest (RF), Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA). The best results were achieved with the MLP classifier with a division of 80% training and 20% testing, with an accuracy of 88.89%. The fusion of these seven classifiers was also applied and the highest result was equal to the MLP. Moreover, in the second simulation, the Convolutional Neural Network (CNN) was utilized and evaluated on five main datasets, namely, House, Western Ontario University (WOU), Experience Application Programming Interface (XAPI), University of California-Irvine (UCI), and Analytics Vidhya (AV). The UCI dataset was subdivided into three datasets, namely, UCI-Math, UCI-Por, and UCI-Fused. Moreover, the AV dataset has three targets which are Math, Reading, and Writing. The best accuracy results were achieved at 97.5%, 99.55%, 98.57%, 99.28%, 99.40%, 99.67%, 92.93%, 96.99%, and 96.84% for the House, WOU, XAPI, UCI-Math, UCI-Por, UCI-Fused, AV-Math, AV-Reading, and AV-Writing datasets, respectively, under the same protocol of evaluation. The system demonstrates that the proposed CNN-based method surpasses all seven conventional methods and other state-of-the-art-work." @default.
- W4384825535 created "2023-07-21" @default.
- W4384825535 creator A5016121540 @default.
- W4384825535 creator A5053424993 @default.
- W4384825535 creator A5072058317 @default.
- W4384825535 creator A5083892296 @default.
- W4384825535 date "2023-07-18" @default.
- W4384825535 modified "2023-09-29" @default.
- W4384825535 title "Comprehensive Evaluations of Student Performance Estimation via Machine Learning" @default.
- W4384825535 cites W1964940342 @default.
- W4384825535 cites W1980943088 @default.
- W4384825535 cites W2008056655 @default.
- W4384825535 cites W2013885787 @default.
- W4384825535 cites W2029869759 @default.
- W4384825535 cites W2086023346 @default.
- W4384825535 cites W2125408827 @default.
- W4384825535 cites W2142406598 @default.
- W4384825535 cites W2160547390 @default.
- W4384825535 cites W2165726487 @default.
- W4384825535 cites W2204122179 @default.
- W4384825535 cites W2216946510 @default.
- W4384825535 cites W2261059368 @default.
- W4384825535 cites W2333258550 @default.
- W4384825535 cites W2513386338 @default.
- W4384825535 cites W2530106549 @default.
- W4384825535 cites W2699041389 @default.
- W4384825535 cites W2750651073 @default.
- W4384825535 cites W2789876780 @default.
- W4384825535 cites W2809254203 @default.
- W4384825535 cites W2911964244 @default.
- W4384825535 cites W2945554622 @default.
- W4384825535 cites W2962949934 @default.
- W4384825535 cites W2963662479 @default.
- W4384825535 cites W2971526234 @default.
- W4384825535 cites W2990252557 @default.
- W4384825535 cites W2996399622 @default.
- W4384825535 cites W2997916679 @default.
- W4384825535 cites W3016213832 @default.
- W4384825535 cites W3022199973 @default.
- W4384825535 cites W3024731668 @default.
- W4384825535 cites W3099679495 @default.
- W4384825535 cites W3129322880 @default.
- W4384825535 cites W3133477053 @default.
- W4384825535 cites W3192165645 @default.
- W4384825535 cites W3201153983 @default.
- W4384825535 cites W3214869169 @default.
- W4384825535 cites W4249247926 @default.
- W4384825535 cites W4285236227 @default.
- W4384825535 doi "https://doi.org/10.3390/math11143153" @default.
- W4384825535 hasPublicationYear "2023" @default.
- W4384825535 type Work @default.
- W4384825535 citedByCount "0" @default.
- W4384825535 crossrefType "journal-article" @default.
- W4384825535 hasAuthorship W4384825535A5016121540 @default.
- W4384825535 hasAuthorship W4384825535A5053424993 @default.
- W4384825535 hasAuthorship W4384825535A5072058317 @default.
- W4384825535 hasAuthorship W4384825535A5083892296 @default.
- W4384825535 hasBestOaLocation W43848255351 @default.
- W4384825535 hasConcept C119857082 @default.
- W4384825535 hasConcept C12267149 @default.
- W4384825535 hasConcept C153180895 @default.
- W4384825535 hasConcept C154945302 @default.
- W4384825535 hasConcept C169258074 @default.
- W4384825535 hasConcept C41008148 @default.
- W4384825535 hasConcept C50644808 @default.
- W4384825535 hasConcept C52001869 @default.
- W4384825535 hasConcept C52620605 @default.
- W4384825535 hasConcept C60908668 @default.
- W4384825535 hasConcept C69738355 @default.
- W4384825535 hasConcept C84525736 @default.
- W4384825535 hasConcept C95623464 @default.
- W4384825535 hasConceptScore W4384825535C119857082 @default.
- W4384825535 hasConceptScore W4384825535C12267149 @default.
- W4384825535 hasConceptScore W4384825535C153180895 @default.
- W4384825535 hasConceptScore W4384825535C154945302 @default.
- W4384825535 hasConceptScore W4384825535C169258074 @default.
- W4384825535 hasConceptScore W4384825535C41008148 @default.
- W4384825535 hasConceptScore W4384825535C50644808 @default.
- W4384825535 hasConceptScore W4384825535C52001869 @default.
- W4384825535 hasConceptScore W4384825535C52620605 @default.
- W4384825535 hasConceptScore W4384825535C60908668 @default.
- W4384825535 hasConceptScore W4384825535C69738355 @default.
- W4384825535 hasConceptScore W4384825535C84525736 @default.
- W4384825535 hasConceptScore W4384825535C95623464 @default.
- W4384825535 hasIssue "14" @default.
- W4384825535 hasLocation W43848255351 @default.
- W4384825535 hasOpenAccess W4384825535 @default.
- W4384825535 hasPrimaryLocation W43848255351 @default.
- W4384825535 hasRelatedWork W2910051269 @default.
- W4384825535 hasRelatedWork W2979979539 @default.
- W4384825535 hasRelatedWork W3127425528 @default.
- W4384825535 hasRelatedWork W3168994312 @default.
- W4384825535 hasRelatedWork W3211546796 @default.
- W4384825535 hasRelatedWork W4200196661 @default.
- W4384825535 hasRelatedWork W4249229055 @default.
- W4384825535 hasRelatedWork W4283784365 @default.
- W4384825535 hasRelatedWork W4316082230 @default.
- W4384825535 hasRelatedWork W4322731594 @default.