Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384827421> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4384827421 endingPage "128" @default.
- W4384827421 startingPage "102" @default.
- W4384827421 abstract "Geo-mechanical parameters and Thomsen parameters play very important roles to design a stable wellbore in a challenging environment. The main objective of this paper is to estimate Thomsen's parameters (ε, γ, δ) and geo-mechanical properties from the core samples by Machine Learning and a comparative analysis with the conventional mathematical approach; to place emphasis on the use of Machine Learning and Artificial Intelligence in the Oil & Gas industry and to highlight its future potential to help in the digital transformation of the industry. Two different Machine Learning models, the Ordinary Least Square method and the Random Forest method, were used to predict the aforementioned geo-mechanical properties from the wave velocity and confining pressure data. In this study, it has been observed that the approaches employed in the estimate of geo-mechanical properties are rapid and reliable (about 93.5 percent accuracy) and may be applied in geo-mechanical modeling for wellbore stability analysis for safe and cost-effective well plan and design on a large scale. The analysis in this work indicates that Young’s modulus and Poisson’s ratio are heavily influenced by the anisotropy parameters. Finally, a comparison is made with mathematical approaches. The machine learning and artificial intelligence approaches shown here are excellently matched with mathematical approaches. The geo-mechanical parameters and Thomsen parameters and be computed with reasonable accuracy with the help of our proposed ML algorithms. Our proposed ML model can predict the geo-mechanical parameters and Thomsen parameters from the velocity profile directly without complex mathematical computation. The mathematical model would have required us to first determine the stiffness constants for the prediction of that parameters. Additionally, we may conclude that a machine learning model needs to be trained with more modeling data to predict the right values with a smaller error margin. The number of data points required to train a model has a significant impact on the model's overall accuracy. Therefore, additional modeling data is needed to learn about and comprehend the intricacies, patterns, and interactions between provided input and output variables." @default.
- W4384827421 created "2023-07-21" @default.
- W4384827421 creator A5062780273 @default.
- W4384827421 date "2023-07-19" @default.
- W4384827421 modified "2023-09-29" @default.
- W4384827421 title "A Machine Learning Approach to Estimate Geo-mechanical Parameters from Core Samples: A Comparative Approach" @default.
- W4384827421 cites W1988344912 @default.
- W4384827421 cites W2020862291 @default.
- W4384827421 cites W2027051265 @default.
- W4384827421 cites W2065505843 @default.
- W4384827421 cites W2069390047 @default.
- W4384827421 cites W2086177816 @default.
- W4384827421 cites W2092938160 @default.
- W4384827421 cites W2098274171 @default.
- W4384827421 cites W2147770387 @default.
- W4384827421 cites W2148741352 @default.
- W4384827421 cites W2748352129 @default.
- W4384827421 cites W3112470555 @default.
- W4384827421 cites W4231468190 @default.
- W4384827421 cites W4256129314 @default.
- W4384827421 doi "https://doi.org/10.37394/232011.2023.18.11" @default.
- W4384827421 hasPublicationYear "2023" @default.
- W4384827421 type Work @default.
- W4384827421 citedByCount "0" @default.
- W4384827421 crossrefType "journal-article" @default.
- W4384827421 hasAuthorship W4384827421A5062780273 @default.
- W4384827421 hasBestOaLocation W43848274211 @default.
- W4384827421 hasConcept C112972136 @default.
- W4384827421 hasConcept C11413529 @default.
- W4384827421 hasConcept C119857082 @default.
- W4384827421 hasConcept C154945302 @default.
- W4384827421 hasConcept C41008148 @default.
- W4384827421 hasConcept C45374587 @default.
- W4384827421 hasConcept C50292564 @default.
- W4384827421 hasConceptScore W4384827421C112972136 @default.
- W4384827421 hasConceptScore W4384827421C11413529 @default.
- W4384827421 hasConceptScore W4384827421C119857082 @default.
- W4384827421 hasConceptScore W4384827421C154945302 @default.
- W4384827421 hasConceptScore W4384827421C41008148 @default.
- W4384827421 hasConceptScore W4384827421C45374587 @default.
- W4384827421 hasConceptScore W4384827421C50292564 @default.
- W4384827421 hasLocation W43848274211 @default.
- W4384827421 hasOpenAccess W4384827421 @default.
- W4384827421 hasPrimaryLocation W43848274211 @default.
- W4384827421 hasRelatedWork W2339204188 @default.
- W4384827421 hasRelatedWork W2954428433 @default.
- W4384827421 hasRelatedWork W3136151706 @default.
- W4384827421 hasRelatedWork W3196155444 @default.
- W4384827421 hasRelatedWork W3209574120 @default.
- W4384827421 hasRelatedWork W4205232832 @default.
- W4384827421 hasRelatedWork W4225307033 @default.
- W4384827421 hasRelatedWork W4286629047 @default.
- W4384827421 hasRelatedWork W4306321456 @default.
- W4384827421 hasRelatedWork W4224009465 @default.
- W4384827421 hasVolume "18" @default.
- W4384827421 isParatext "false" @default.
- W4384827421 isRetracted "false" @default.
- W4384827421 workType "article" @default.