Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384827963> ?p ?o ?g. }
- W4384827963 endingPage "434" @default.
- W4384827963 startingPage "419" @default.
- W4384827963 abstract "Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (⋅OH) and/or hydrated electrons (e−(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons." @default.
- W4384827963 created "2023-07-21" @default.
- W4384827963 creator A5003152477 @default.
- W4384827963 creator A5017691839 @default.
- W4384827963 creator A5030850614 @default.
- W4384827963 creator A5034744084 @default.
- W4384827963 creator A5047100975 @default.
- W4384827963 creator A5047668009 @default.
- W4384827963 creator A5057764849 @default.
- W4384827963 creator A5058112134 @default.
- W4384827963 date "2023-07-17" @default.
- W4384827963 modified "2023-09-26" @default.
- W4384827963 title "Plasma-Assisted Abatement of Per- and Polyfluoroalkyl Substances (PFAS): Thermodynamic Analysis and Validation in Gliding Arc Discharge" @default.
- W4384827963 cites W1109119040 @default.
- W4384827963 cites W1474570092 @default.
- W4384827963 cites W1823575611 @default.
- W4384827963 cites W1870630870 @default.
- W4384827963 cites W1969937967 @default.
- W4384827963 cites W1972809876 @default.
- W4384827963 cites W1977697984 @default.
- W4384827963 cites W1995501808 @default.
- W4384827963 cites W2002298964 @default.
- W4384827963 cites W2002477691 @default.
- W4384827963 cites W2012957279 @default.
- W4384827963 cites W2017362734 @default.
- W4384827963 cites W2024786417 @default.
- W4384827963 cites W2039774973 @default.
- W4384827963 cites W2048546446 @default.
- W4384827963 cites W2054627703 @default.
- W4384827963 cites W2062148169 @default.
- W4384827963 cites W2081517506 @default.
- W4384827963 cites W2091339637 @default.
- W4384827963 cites W2163746642 @default.
- W4384827963 cites W2167567374 @default.
- W4384827963 cites W2171408642 @default.
- W4384827963 cites W22341996 @default.
- W4384827963 cites W2312890492 @default.
- W4384827963 cites W2319407062 @default.
- W4384827963 cites W2579556225 @default.
- W4384827963 cites W2768012351 @default.
- W4384827963 cites W2768693017 @default.
- W4384827963 cites W2803483713 @default.
- W4384827963 cites W2891965444 @default.
- W4384827963 cites W2921364395 @default.
- W4384827963 cites W2925213240 @default.
- W4384827963 cites W2939833700 @default.
- W4384827963 cites W2972246824 @default.
- W4384827963 cites W2972567082 @default.
- W4384827963 cites W2979364787 @default.
- W4384827963 cites W2984803953 @default.
- W4384827963 cites W2987681279 @default.
- W4384827963 cites W2998110013 @default.
- W4384827963 cites W3000500049 @default.
- W4384827963 cites W3003494964 @default.
- W4384827963 cites W3009642251 @default.
- W4384827963 cites W3012360341 @default.
- W4384827963 cites W3019848836 @default.
- W4384827963 cites W3035574421 @default.
- W4384827963 cites W3042996022 @default.
- W4384827963 cites W3080199277 @default.
- W4384827963 cites W3094527075 @default.
- W4384827963 cites W3098938024 @default.
- W4384827963 cites W3125710473 @default.
- W4384827963 cites W3127250369 @default.
- W4384827963 cites W3159448053 @default.
- W4384827963 cites W3160569420 @default.
- W4384827963 cites W3188969666 @default.
- W4384827963 cites W3192356706 @default.
- W4384827963 cites W3197714162 @default.
- W4384827963 cites W3206042759 @default.
- W4384827963 cites W3207416296 @default.
- W4384827963 cites W3212429971 @default.
- W4384827963 cites W3217298378 @default.
- W4384827963 cites W4200223625 @default.
- W4384827963 cites W4206530474 @default.
- W4384827963 cites W4223628807 @default.
- W4384827963 cites W4289526601 @default.
- W4384827963 cites W4294991742 @default.
- W4384827963 cites W4313531859 @default.
- W4384827963 cites W2022443779 @default.
- W4384827963 doi "https://doi.org/10.3390/plasma6030029" @default.
- W4384827963 hasPublicationYear "2023" @default.
- W4384827963 type Work @default.
- W4384827963 citedByCount "0" @default.
- W4384827963 crossrefType "journal-article" @default.
- W4384827963 hasAuthorship W4384827963A5003152477 @default.
- W4384827963 hasAuthorship W4384827963A5017691839 @default.
- W4384827963 hasAuthorship W4384827963A5030850614 @default.
- W4384827963 hasAuthorship W4384827963A5034744084 @default.
- W4384827963 hasAuthorship W4384827963A5047100975 @default.
- W4384827963 hasAuthorship W4384827963A5047668009 @default.
- W4384827963 hasAuthorship W4384827963A5057764849 @default.
- W4384827963 hasAuthorship W4384827963A5058112134 @default.
- W4384827963 hasBestOaLocation W43848279631 @default.
- W4384827963 hasConcept C107872376 @default.
- W4384827963 hasConcept C111696902 @default.
- W4384827963 hasConcept C121332964 @default.
- W4384827963 hasConcept C147368240 @default.