Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384830716> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4384830716 abstract "Geometric Algebra (GA) is popular for its immediate geometric interpretations of algebraic objects and operations. It is based on Clifford Algebra on vector spaces and extends linear algebra of vectors by operations such as an invertible product, i.e. divisions by vectors. This formalism allows for a complete algebra on vectors same as for scalar or complex numbers. It is particularly suitable for rotations in arbitrary dimensions. In Euclidean 3D space quaternions are known to be numerically superior to rotation matrices and already widely used in computer graphics. However, their meaning beyond its numerical formalism often remains mysterious. GA allows for an intuitive interpretation in terms of planes of rotations and extends this concept to arbitrary dimensions by embedding vectors into a higher dimensional, but still intuitively graspable space of multi-vectors. However, out intuition of more than three spatial dimensions is deficient. The space of colors forms a vector space as well, though one of non-spatial nature, but spun by the primary colors red, green, blue. The GA formalism can be applied here as well, amalgamating surprisingly with the notion of vectors and co-vectors known from differential geometry: tangential vectors on a manifold correspond to additive colors red/green/blue, whereas co-vectors from the co-tangential space correspond to subtractive primary colors magenta, yellow, cyan. GA in turn considers vectors, bi-vectors and anti-vectors as part of its generalized multi-vector zoo of algebraic objects. In 3D space vectors, anti-vectors, bi-vectors and covectors are all three-dimensional objects that can be identified with each other, so their distinction is concealed. Confusions arise from notions such as “normal vectors” vs. “axial vectors”. Higher dimensional spaces exhibit the differences more clearly. Using colors instead of spatial dimensions we can expand our intuition by considering transparency as an independent, four-dimensional property of a color vector. We can thereby explore 4D GA alternatively to spacetime in special/general relativity. However, even in 4D possibly confusing ambiguities remain between vectors, co-vectors, bi-vectors and bi-co-vectors: bi-vectors and bi-co-vectors - both six-dimensional objects - are visually equivalent. They become unequivocal only in five or higher dimensions. Envisioning five-dimensional geometry is even more challenging to the human mind, but in color space we can add another property, texture to constitute a five-dimensional vector space. The properties of a bi-vector and a bi-co-vector becomes evident there: We can still study all possible combinations of colors/transparency/texture visually. This higher-dimensional yet intuitive approach demonstrates the need to distinguish among different kinds of vectors before identifying them in special situations, which also clarifies the meanings of algebraic objects in 3D Euclidean space and allows for better formulations of algorithms in 3D." @default.
- W4384830716 created "2023-07-21" @default.
- W4384830716 creator A5054314843 @default.
- W4384830716 date "2023-07-01" @default.
- W4384830716 modified "2023-09-23" @default.
- W4384830716 title "Illustrating Geometric Algebra and Differential Geometry in 5D Color Space" @default.
- W4384830716 doi "https://doi.org/10.24132/csrn.3301.1" @default.
- W4384830716 hasPublicationYear "2023" @default.
- W4384830716 type Work @default.
- W4384830716 citedByCount "0" @default.
- W4384830716 crossrefType "proceedings-article" @default.
- W4384830716 hasAuthorship W4384830716A5054314843 @default.
- W4384830716 hasBestOaLocation W43848307161 @default.
- W4384830716 hasConcept C100856211 @default.
- W4384830716 hasConcept C118965365 @default.
- W4384830716 hasConcept C13336665 @default.
- W4384830716 hasConcept C134306372 @default.
- W4384830716 hasConcept C136119220 @default.
- W4384830716 hasConcept C138354692 @default.
- W4384830716 hasConcept C169171071 @default.
- W4384830716 hasConcept C180671464 @default.
- W4384830716 hasConcept C186450821 @default.
- W4384830716 hasConcept C200127275 @default.
- W4384830716 hasConcept C202444582 @default.
- W4384830716 hasConcept C2524010 @default.
- W4384830716 hasConcept C26238338 @default.
- W4384830716 hasConcept C33923547 @default.
- W4384830716 hasConcept C82927061 @default.
- W4384830716 hasConcept C9376300 @default.
- W4384830716 hasConceptScore W4384830716C100856211 @default.
- W4384830716 hasConceptScore W4384830716C118965365 @default.
- W4384830716 hasConceptScore W4384830716C13336665 @default.
- W4384830716 hasConceptScore W4384830716C134306372 @default.
- W4384830716 hasConceptScore W4384830716C136119220 @default.
- W4384830716 hasConceptScore W4384830716C138354692 @default.
- W4384830716 hasConceptScore W4384830716C169171071 @default.
- W4384830716 hasConceptScore W4384830716C180671464 @default.
- W4384830716 hasConceptScore W4384830716C186450821 @default.
- W4384830716 hasConceptScore W4384830716C200127275 @default.
- W4384830716 hasConceptScore W4384830716C202444582 @default.
- W4384830716 hasConceptScore W4384830716C2524010 @default.
- W4384830716 hasConceptScore W4384830716C26238338 @default.
- W4384830716 hasConceptScore W4384830716C33923547 @default.
- W4384830716 hasConceptScore W4384830716C82927061 @default.
- W4384830716 hasConceptScore W4384830716C9376300 @default.
- W4384830716 hasLocation W43848307161 @default.
- W4384830716 hasOpenAccess W4384830716 @default.
- W4384830716 hasPrimaryLocation W43848307161 @default.
- W4384830716 hasRelatedWork W1006411175 @default.
- W4384830716 hasRelatedWork W1515695641 @default.
- W4384830716 hasRelatedWork W186646607 @default.
- W4384830716 hasRelatedWork W2025746100 @default.
- W4384830716 hasRelatedWork W3155903318 @default.
- W4384830716 hasRelatedWork W3173740752 @default.
- W4384830716 hasRelatedWork W4213119422 @default.
- W4384830716 hasRelatedWork W4226142692 @default.
- W4384830716 hasRelatedWork W4287208359 @default.
- W4384830716 hasRelatedWork W4360985570 @default.
- W4384830716 isParatext "false" @default.
- W4384830716 isRetracted "false" @default.
- W4384830716 workType "article" @default.