Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384830922> ?p ?o ?g. }
- W4384830922 endingPage "119967" @default.
- W4384830922 startingPage "119967" @default.
- W4384830922 abstract "Accurate predictions of source resolved atmospheric PM2.5 concentrations at high resolutions using chemical transport models (CTMs) require expensive CTM simulations and development of high-resolution emissions inventories. We use multiple machine learning (ML) approaches to downscale coarse-resolution (36 × 36 km2) CTM predictions to 1 × 1 km2 spatial resolution. ML predictions include concentrations of the major chemical components of PM2.5 and the contributions of its major emissions sources. Inputs for the ML models include 36 × 36 km2 source resolved CTM predicted concentrations of all PM2.5 components, meteorological data, and several land-use (LU) variables. The output of our ML models is the 1 × 1 km2 source-resolved concentrations of all major PM2.5 components in southwestern Pennsylvania (5184 km2 domain) during February and July 2017. Models were trained and validated using 1 × 1 km2 resolution source- and species-resolved CTM predictions of PM2.5 from recent complementary studies. The best overall performance was found using a random forest (RF) model, where species and source resolved PM2.5 concentrations were reproduced with low normalized mean bias (|NMB| < 0.01). The downscaling model captures the spatial distribution of PM2.5 both by component and source, with some discrepancies when predicting the plumes of large point sources that have long-range impacts. In a test of generalizability to unknown domains, the model differentiates well between areas that are primarily urban, rural, or industrial but faces challenges with the reproduction of the effects of large point sources of PM2.5 when entire quadrants are removed from the training data. The results represent a proof of concept for downscaling low-resolution CTM predictions using native high-resolution CTM predictions in training." @default.
- W4384830922 created "2023-07-21" @default.
- W4384830922 creator A5007074414 @default.
- W4384830922 creator A5026831119 @default.
- W4384830922 creator A5050225100 @default.
- W4384830922 creator A5060379703 @default.
- W4384830922 creator A5084603540 @default.
- W4384830922 date "2023-10-01" @default.
- W4384830922 modified "2023-10-14" @default.
- W4384830922 title "High-resolution downscaling of source resolved PM2.5 predictions using machine learning models" @default.
- W4384830922 cites W2021377001 @default.
- W4384830922 cites W2038125476 @default.
- W4384830922 cites W2098637521 @default.
- W4384830922 cites W2113912428 @default.
- W4384830922 cites W2122825543 @default.
- W4384830922 cites W2130189616 @default.
- W4384830922 cites W2136447740 @default.
- W4384830922 cites W2163510770 @default.
- W4384830922 cites W2224627999 @default.
- W4384830922 cites W2272706126 @default.
- W4384830922 cites W2282992258 @default.
- W4384830922 cites W2805280005 @default.
- W4384830922 cites W2891750563 @default.
- W4384830922 cites W2904851601 @default.
- W4384830922 cites W2911964244 @default.
- W4384830922 cites W2945306488 @default.
- W4384830922 cites W2990974130 @default.
- W4384830922 cites W3127673685 @default.
- W4384830922 cites W4224126643 @default.
- W4384830922 cites W4225762040 @default.
- W4384830922 cites W4311232090 @default.
- W4384830922 cites W4323308461 @default.
- W4384830922 doi "https://doi.org/10.1016/j.atmosenv.2023.119967" @default.
- W4384830922 hasPublicationYear "2023" @default.
- W4384830922 type Work @default.
- W4384830922 citedByCount "0" @default.
- W4384830922 crossrefType "journal-article" @default.
- W4384830922 hasAuthorship W4384830922A5007074414 @default.
- W4384830922 hasAuthorship W4384830922A5026831119 @default.
- W4384830922 hasAuthorship W4384830922A5050225100 @default.
- W4384830922 hasAuthorship W4384830922A5060379703 @default.
- W4384830922 hasAuthorship W4384830922A5084603540 @default.
- W4384830922 hasConcept C103783831 @default.
- W4384830922 hasConcept C105795698 @default.
- W4384830922 hasConcept C107054158 @default.
- W4384830922 hasConcept C120665830 @default.
- W4384830922 hasConcept C121332964 @default.
- W4384830922 hasConcept C127313418 @default.
- W4384830922 hasConcept C153294291 @default.
- W4384830922 hasConcept C154945302 @default.
- W4384830922 hasConcept C159985019 @default.
- W4384830922 hasConcept C192562407 @default.
- W4384830922 hasConcept C204323151 @default.
- W4384830922 hasConcept C205372480 @default.
- W4384830922 hasConcept C205649164 @default.
- W4384830922 hasConcept C27158222 @default.
- W4384830922 hasConcept C33923547 @default.
- W4384830922 hasConcept C39432304 @default.
- W4384830922 hasConcept C41008148 @default.
- W4384830922 hasConcept C41156917 @default.
- W4384830922 hasConcept C62649853 @default.
- W4384830922 hasConcept C91586092 @default.
- W4384830922 hasConceptScore W4384830922C103783831 @default.
- W4384830922 hasConceptScore W4384830922C105795698 @default.
- W4384830922 hasConceptScore W4384830922C107054158 @default.
- W4384830922 hasConceptScore W4384830922C120665830 @default.
- W4384830922 hasConceptScore W4384830922C121332964 @default.
- W4384830922 hasConceptScore W4384830922C127313418 @default.
- W4384830922 hasConceptScore W4384830922C153294291 @default.
- W4384830922 hasConceptScore W4384830922C154945302 @default.
- W4384830922 hasConceptScore W4384830922C159985019 @default.
- W4384830922 hasConceptScore W4384830922C192562407 @default.
- W4384830922 hasConceptScore W4384830922C204323151 @default.
- W4384830922 hasConceptScore W4384830922C205372480 @default.
- W4384830922 hasConceptScore W4384830922C205649164 @default.
- W4384830922 hasConceptScore W4384830922C27158222 @default.
- W4384830922 hasConceptScore W4384830922C33923547 @default.
- W4384830922 hasConceptScore W4384830922C39432304 @default.
- W4384830922 hasConceptScore W4384830922C41008148 @default.
- W4384830922 hasConceptScore W4384830922C41156917 @default.
- W4384830922 hasConceptScore W4384830922C62649853 @default.
- W4384830922 hasConceptScore W4384830922C91586092 @default.
- W4384830922 hasLocation W43848309221 @default.
- W4384830922 hasOpenAccess W4384830922 @default.
- W4384830922 hasPrimaryLocation W43848309221 @default.
- W4384830922 hasRelatedWork W2008630378 @default.
- W4384830922 hasRelatedWork W2380042710 @default.
- W4384830922 hasRelatedWork W2394436593 @default.
- W4384830922 hasRelatedWork W2526815458 @default.
- W4384830922 hasRelatedWork W3010558748 @default.
- W4384830922 hasRelatedWork W3013458534 @default.
- W4384830922 hasRelatedWork W4220911053 @default.
- W4384830922 hasRelatedWork W4377833746 @default.
- W4384830922 hasRelatedWork W4387102043 @default.
- W4384830922 hasRelatedWork W769766909 @default.
- W4384830922 hasVolume "310" @default.
- W4384830922 isParatext "false" @default.
- W4384830922 isRetracted "false" @default.