Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384831607> ?p ?o ?g. }
- W4384831607 endingPage "104362" @default.
- W4384831607 startingPage "104362" @default.
- W4384831607 abstract "Wave breaking plays a crucial role in several areas of interest in coastal engineering, such as flooding, wave loading on structures and coastal morphodynamics. In the present study, Smoothed Particle Hydrodynamics (SPH) simulations of monochromatic waves breaking over a rigid barred beach profile are presented. The numerical results comprise wave heights, phase average velocities, time-averaged velocities, vorticity dynamics, and radiation stress, and are validated versus detailed water surface and velocity measurements carried out in a large-scale laboratory wave flume. The experimental data include velocity profiles below the wave trough measured at 22 cross-shore locations in the bar region using acoustic and optical techniques and water surface elevation measured along the flume using resistive gauges, acoustic gauges and pressure sensors. This study is novel in that it analyses the hydrodynamics of wave breaking at a scale close to natural conditions, thus significantly reducing the scale effects of most previous studies, which were conducted at a much smaller scale. In general, water surface elevation is well reproduced by SPH, but discrepancies with the experiments are observed in the highly aerated breaking region, depending on the measurement technique. The SPH simulation shows that wave breaking generates a recirculating cell, immediately above the trough of the bar. Within this cell, near the bed, the flow is offshore directed, while in the upper part of the water column it is onshore oriented. This flow is probably one of the mechanisms that determine the growth of the bar when the bed is made of mobile material. The time-averaged velocity profiles are reproduced with reasonable accuracy by the numerical model, except at the edges of the bar trough, where discrepancies with respect to the measurements are observed. The numerical results provide detailed information, particularly interesting in areas lacking experimental data. One of the main surprising features revealed by the SPH simulations is the generation of a vortex pair that occurs when the cavities formed by the plunge jet collapse. These vortices can occasionally deform the free surface. Based on the numerical results, an analysis of the terms contributing to radiation stress shows that the product between the horizontal and the vertical velocity components does not make a significant contribution. Through comparisons with the SPH results, it is observed that the linear wave theory provides correct estimates of the radiation stress in the shoaling region sufficiently far from the bar crest, while in the surf zone it reproduces incorrect results. Information about the appropriate SPH model setup to correctly capture the physical processes involved in the breaking phenomenon are also presented." @default.
- W4384831607 created "2023-07-21" @default.
- W4384831607 creator A5016112287 @default.
- W4384831607 creator A5037197492 @default.
- W4384831607 creator A5044051921 @default.
- W4384831607 creator A5063181885 @default.
- W4384831607 creator A5078241157 @default.
- W4384831607 date "2023-10-01" @default.
- W4384831607 modified "2023-10-06" @default.
- W4384831607 title "Large-scale wave breaking over a barred beach: SPH numerical simulation and comparison with experiments" @default.
- W4384831607 cites W1967906568 @default.
- W4384831607 cites W1968014473 @default.
- W4384831607 cites W1968312755 @default.
- W4384831607 cites W1975615012 @default.
- W4384831607 cites W1986088010 @default.
- W4384831607 cites W1987389622 @default.
- W4384831607 cites W1992777291 @default.
- W4384831607 cites W1994439127 @default.
- W4384831607 cites W2003847917 @default.
- W4384831607 cites W2015734464 @default.
- W4384831607 cites W2033605062 @default.
- W4384831607 cites W2037975058 @default.
- W4384831607 cites W2041849908 @default.
- W4384831607 cites W2050962398 @default.
- W4384831607 cites W2061151297 @default.
- W4384831607 cites W2066285017 @default.
- W4384831607 cites W2080977367 @default.
- W4384831607 cites W2083736569 @default.
- W4384831607 cites W2093417412 @default.
- W4384831607 cites W2093730327 @default.
- W4384831607 cites W2097862562 @default.
- W4384831607 cites W2112636108 @default.
- W4384831607 cites W2127689830 @default.
- W4384831607 cites W2154283737 @default.
- W4384831607 cites W2185846588 @default.
- W4384831607 cites W2209873826 @default.
- W4384831607 cites W2313889604 @default.
- W4384831607 cites W2515984693 @default.
- W4384831607 cites W2557426587 @default.
- W4384831607 cites W2585677644 @default.
- W4384831607 cites W2601787018 @default.
- W4384831607 cites W2606746223 @default.
- W4384831607 cites W2617798458 @default.
- W4384831607 cites W2623416998 @default.
- W4384831607 cites W2639180371 @default.
- W4384831607 cites W2791589204 @default.
- W4384831607 cites W2792237371 @default.
- W4384831607 cites W2793442438 @default.
- W4384831607 cites W2796944804 @default.
- W4384831607 cites W2808292078 @default.
- W4384831607 cites W2809207864 @default.
- W4384831607 cites W2883019750 @default.
- W4384831607 cites W2887558070 @default.
- W4384831607 cites W2894769480 @default.
- W4384831607 cites W2901906613 @default.
- W4384831607 cites W2906864132 @default.
- W4384831607 cites W2912251723 @default.
- W4384831607 cites W2914394377 @default.
- W4384831607 cites W2953110996 @default.
- W4384831607 cites W2976904312 @default.
- W4384831607 cites W3015951462 @default.
- W4384831607 cites W3021622851 @default.
- W4384831607 cites W3022344486 @default.
- W4384831607 cites W3081704990 @default.
- W4384831607 cites W3088001423 @default.
- W4384831607 cites W3094402281 @default.
- W4384831607 cites W3126797143 @default.
- W4384831607 cites W3138024950 @default.
- W4384831607 cites W3151802420 @default.
- W4384831607 cites W3162939459 @default.
- W4384831607 cites W3202227166 @default.
- W4384831607 cites W3203956279 @default.
- W4384831607 cites W3213347058 @default.
- W4384831607 cites W4206509780 @default.
- W4384831607 cites W4207043317 @default.
- W4384831607 cites W4220840331 @default.
- W4384831607 cites W4229333192 @default.
- W4384831607 cites W4280513585 @default.
- W4384831607 cites W4284958069 @default.
- W4384831607 cites W4307739533 @default.
- W4384831607 cites W963716650 @default.
- W4384831607 doi "https://doi.org/10.1016/j.coastaleng.2023.104362" @default.
- W4384831607 hasPublicationYear "2023" @default.
- W4384831607 type Work @default.
- W4384831607 citedByCount "0" @default.
- W4384831607 crossrefType "journal-article" @default.
- W4384831607 hasAuthorship W4384831607A5016112287 @default.
- W4384831607 hasAuthorship W4384831607A5037197492 @default.
- W4384831607 hasAuthorship W4384831607A5044051921 @default.
- W4384831607 hasAuthorship W4384831607A5063181885 @default.
- W4384831607 hasAuthorship W4384831607A5078241157 @default.
- W4384831607 hasBestOaLocation W43848316071 @default.
- W4384831607 hasConcept C111368507 @default.
- W4384831607 hasConcept C114793014 @default.
- W4384831607 hasConcept C120665830 @default.
- W4384831607 hasConcept C121332964 @default.
- W4384831607 hasConcept C122564879 @default.
- W4384831607 hasConcept C127313418 @default.