Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384859209> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4384859209 abstract "We prove that for every oriented graph $D$ and every choice of positive integers $k$ and $ell$, there exists an oriented graph $D^*$ along with a surjective homomorphism $psicolon V(D^*) to V(D)$ such that: (i) girth$(D^*) geqell$; (ii) for every oriented graph $C$ with at most $k$ vertices, there exists a homomorphism from $D^*$ to $C$ if and only if there exists a homomorphism from $D$ to $C$; and (iii) for every $D$-pointed oriented graph $C$ with at most $k$ vertices and for every homomorphism $varphicolon V(D^*) to V(C)$ there exists a unique homomorphism $fcolon V(D) to V(C)$ such that $varphi=f circ psi$. Determining the oriented chromatic number of an oriented graph $D$ is equivalent to finding the smallest integer $k$ such that $D$ admits a homomorphism to an order-$k$ tournament, so our main theorem yields results on the girth and oriented chromatic number of oriented graphs. While our main proof is probabilistic (hence nonconstructive), for any given $ellgeq 3$ and $kgeq 5$, we include a construction of an oriented graph with girth $ell$ and oriented chromatic number $k$." @default.
- W4384859209 created "2023-07-21" @default.
- W4384859209 creator A5039902341 @default.
- W4384859209 creator A5087913844 @default.
- W4384859209 date "2023-07-18" @default.
- W4384859209 modified "2023-09-23" @default.
- W4384859209 title "On colouring oriented graphs of large girth" @default.
- W4384859209 doi "https://doi.org/10.48550/arxiv.2307.09461" @default.
- W4384859209 hasPublicationYear "2023" @default.
- W4384859209 type Work @default.
- W4384859209 citedByCount "0" @default.
- W4384859209 crossrefType "posted-content" @default.
- W4384859209 hasAuthorship W4384859209A5039902341 @default.
- W4384859209 hasAuthorship W4384859209A5087913844 @default.
- W4384859209 hasBestOaLocation W43848592091 @default.
- W4384859209 hasConcept C114614502 @default.
- W4384859209 hasConcept C118615104 @default.
- W4384859209 hasConcept C119238805 @default.
- W4384859209 hasConcept C132525143 @default.
- W4384859209 hasConcept C149530733 @default.
- W4384859209 hasConcept C203776342 @default.
- W4384859209 hasConcept C206815938 @default.
- W4384859209 hasConcept C2777434295 @default.
- W4384859209 hasConcept C33923547 @default.
- W4384859209 hasConcept C4042151 @default.
- W4384859209 hasConcept C43517604 @default.
- W4384859209 hasConcept C7036158 @default.
- W4384859209 hasConceptScore W4384859209C114614502 @default.
- W4384859209 hasConceptScore W4384859209C118615104 @default.
- W4384859209 hasConceptScore W4384859209C119238805 @default.
- W4384859209 hasConceptScore W4384859209C132525143 @default.
- W4384859209 hasConceptScore W4384859209C149530733 @default.
- W4384859209 hasConceptScore W4384859209C203776342 @default.
- W4384859209 hasConceptScore W4384859209C206815938 @default.
- W4384859209 hasConceptScore W4384859209C2777434295 @default.
- W4384859209 hasConceptScore W4384859209C33923547 @default.
- W4384859209 hasConceptScore W4384859209C4042151 @default.
- W4384859209 hasConceptScore W4384859209C43517604 @default.
- W4384859209 hasConceptScore W4384859209C7036158 @default.
- W4384859209 hasLocation W43848592091 @default.
- W4384859209 hasOpenAccess W4384859209 @default.
- W4384859209 hasPrimaryLocation W43848592091 @default.
- W4384859209 hasRelatedWork W1548527711 @default.
- W4384859209 hasRelatedWork W160882559 @default.
- W4384859209 hasRelatedWork W1985391430 @default.
- W4384859209 hasRelatedWork W1987952056 @default.
- W4384859209 hasRelatedWork W2039256426 @default.
- W4384859209 hasRelatedWork W2473857262 @default.
- W4384859209 hasRelatedWork W2537038771 @default.
- W4384859209 hasRelatedWork W3103228894 @default.
- W4384859209 hasRelatedWork W830674616 @default.
- W4384859209 hasRelatedWork W1508755082 @default.
- W4384859209 isParatext "false" @default.
- W4384859209 isRetracted "false" @default.
- W4384859209 workType "article" @default.