Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384895629> ?p ?o ?g. }
- W4384895629 endingPage "113723" @default.
- W4384895629 startingPage "113723" @default.
- W4384895629 abstract "Accurate quantitative precipitation estimation (QPE) is essential for various applications, including land surface modeling, flood forecasting, drought monitoring and prediction. In situ precipitation datasets, remote sensing-based estimations, and reanalysis products have heterogeneous uncertainty. Numerous models have been developed to merge precipitation estimations from different sources to improve the accuracy of QPE. However, many of these attempts are mainly focused on spatial or temporal correlations between various remote sensing sources and/or gauge data separately, and thus, the developed model cannot fully capture the inherent spatiotemporal dependencies that could potentially improve the precipitation estimations. In this study, we developed a general framework that can simultaneously merge and downscale multiple user-defined precipitation products by using rain gauge observations as target values. A novel deep learning-based convolutional neural network architecture, namely, the precipitation data fusion network (PDFN), that combines multiple layers of 3D-CNN and ConvLSTM was developed to fully exploit the spatial and temporal patterns of precipitation. This architecture benefits from techniques such as batch normalization, data augmentation schemes, and dropout layers to avoid overfitting and address skewed class proportions due to the highly imbalanced nature of the precipitation datasets. The results showed that the fused daily product remarkably improved the mean square error (MSE) and Pearson correlation coefficient (PCC) by 35% and 16%, respectively, compared to the best-performing product." @default.
- W4384895629 created "2023-07-21" @default.
- W4384895629 creator A5026811888 @default.
- W4384895629 creator A5034878175 @default.
- W4384895629 creator A5037342105 @default.
- W4384895629 date "2023-09-01" @default.
- W4384895629 modified "2023-09-23" @default.
- W4384895629 title "A deep learning-based framework for multi-source precipitation fusion" @default.
- W4384895629 cites W1964264838 @default.
- W4384895629 cites W1983364832 @default.
- W4384895629 cites W1983745221 @default.
- W4384895629 cites W1986153748 @default.
- W4384895629 cites W1989120577 @default.
- W4384895629 cites W1989839776 @default.
- W4384895629 cites W1990364733 @default.
- W4384895629 cites W2008817489 @default.
- W4384895629 cites W2008820148 @default.
- W4384895629 cites W2018625975 @default.
- W4384895629 cites W2029604816 @default.
- W4384895629 cites W2031990415 @default.
- W4384895629 cites W2046567883 @default.
- W4384895629 cites W2049011065 @default.
- W4384895629 cites W2058147240 @default.
- W4384895629 cites W2064675550 @default.
- W4384895629 cites W2065555981 @default.
- W4384895629 cites W2067735728 @default.
- W4384895629 cites W2073298425 @default.
- W4384895629 cites W2076358440 @default.
- W4384895629 cites W2094653192 @default.
- W4384895629 cites W2099969340 @default.
- W4384895629 cites W2101394945 @default.
- W4384895629 cites W2111194938 @default.
- W4384895629 cites W2116149712 @default.
- W4384895629 cites W2120321707 @default.
- W4384895629 cites W2121745948 @default.
- W4384895629 cites W2130534289 @default.
- W4384895629 cites W2138763184 @default.
- W4384895629 cites W2139845314 @default.
- W4384895629 cites W2147347671 @default.
- W4384895629 cites W2156629479 @default.
- W4384895629 cites W2157474075 @default.
- W4384895629 cites W2160097385 @default.
- W4384895629 cites W2165242200 @default.
- W4384895629 cites W2166460224 @default.
- W4384895629 cites W2168632895 @default.
- W4384895629 cites W2170280355 @default.
- W4384895629 cites W2254515353 @default.
- W4384895629 cites W2261645655 @default.
- W4384895629 cites W2508750477 @default.
- W4384895629 cites W2560640726 @default.
- W4384895629 cites W2611772571 @default.
- W4384895629 cites W2756918146 @default.
- W4384895629 cites W2766575794 @default.
- W4384895629 cites W2773928770 @default.
- W4384895629 cites W2782522152 @default.
- W4384895629 cites W2789329162 @default.
- W4384895629 cites W2791881584 @default.
- W4384895629 cites W2795411846 @default.
- W4384895629 cites W2795550267 @default.
- W4384895629 cites W2797707900 @default.
- W4384895629 cites W2800016409 @default.
- W4384895629 cites W2805187526 @default.
- W4384895629 cites W2893539713 @default.
- W4384895629 cites W2923782278 @default.
- W4384895629 cites W2954996726 @default.
- W4384895629 cites W2963741310 @default.
- W4384895629 cites W2980276221 @default.
- W4384895629 cites W2981730281 @default.
- W4384895629 cites W2996758938 @default.
- W4384895629 cites W3005197680 @default.
- W4384895629 cites W3008241583 @default.
- W4384895629 cites W3008439211 @default.
- W4384895629 cites W3015589129 @default.
- W4384895629 cites W3016242410 @default.
- W4384895629 cites W3032265670 @default.
- W4384895629 cites W3034444408 @default.
- W4384895629 cites W3092836652 @default.
- W4384895629 cites W3095886074 @default.
- W4384895629 cites W3100677398 @default.
- W4384895629 cites W3103858652 @default.
- W4384895629 cites W3119095696 @default.
- W4384895629 cites W3127379605 @default.
- W4384895629 cites W3153593374 @default.
- W4384895629 cites W3164913159 @default.
- W4384895629 cites W3181356059 @default.
- W4384895629 cites W3182380878 @default.
- W4384895629 cites W3206577657 @default.
- W4384895629 cites W3210169729 @default.
- W4384895629 cites W4200414142 @default.
- W4384895629 cites W4220798126 @default.
- W4384895629 cites W4220821170 @default.
- W4384895629 cites W4226052030 @default.
- W4384895629 cites W4229443748 @default.
- W4384895629 cites W4242180866 @default.
- W4384895629 cites W4282966696 @default.
- W4384895629 cites W4292543099 @default.
- W4384895629 cites W4294068833 @default.
- W4384895629 cites W4310013602 @default.