Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384895673> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4384895673 endingPage "118594" @default.
- W4384895673 startingPage "118594" @default.
- W4384895673 abstract "Modern wastewater treatment plants base their biological processes on advanced control systems which ensure compliance with discharge limits and minimize energy consumption responding to information from on-line probes. The correct readings of probes are particularly crucial for intermittent aeration controllers, which rely on real-time measurements of ammonia and oxygen in biological tanks. These data are also an important resource for developing artificial intelligence algorithms that can identify process or sensor anomalies, thus guiding the choices of plant operators and automatic process controllers. However, using anomaly detection and classification algorithms in real-time wastewater treatment is challenging because of the noisy nature of sensor measurements, the difficulty of obtaining labeled real-plant data, and the complex and interdependent mechanisms that govern biological processes. This work aims at thoroughly exploring the performance of machine learning methods in detecting and classifying the main anomalies in plants operating with intermittent aeration. Using oxygen, ammonia and aeration power measurements from a set of plants in Italy, we perform both binary and multiclass classification, and we compare them through a rigorous validation procedure that includes a test on an unknown dataset, proposing a new evaluation protocol. The classification methods explored are support vector machine, multilayer perceptron, random forest, and two gradient boosting methods (LightGBM and XGBoost). The best performance was achieved using the gradient boosting ensemble algorithms, with up to 96% of anomalies detected and up to 84% and 62% of anomalies classified correctly on the first and second datasets respectively." @default.
- W4384895673 created "2023-07-21" @default.
- W4384895673 creator A5021389231 @default.
- W4384895673 creator A5058018694 @default.
- W4384895673 creator A5062759774 @default.
- W4384895673 creator A5092504022 @default.
- W4384895673 date "2023-10-01" @default.
- W4384895673 modified "2023-10-15" @default.
- W4384895673 title "Machine learning methods for anomaly classification in wastewater treatment plants" @default.
- W4384895673 cites W1587387353 @default.
- W4384895673 cites W1996740952 @default.
- W4384895673 cites W2100251534 @default.
- W4384895673 cites W2148143831 @default.
- W4384895673 cites W2771100845 @default.
- W4384895673 cites W2792355080 @default.
- W4384895673 cites W2911964244 @default.
- W4384895673 cites W2924962937 @default.
- W4384895673 cites W3003626942 @default.
- W4384895673 cites W3085114395 @default.
- W4384895673 cites W3129057775 @default.
- W4384895673 cites W3207066068 @default.
- W4384895673 cites W4210732270 @default.
- W4384895673 cites W4288076010 @default.
- W4384895673 doi "https://doi.org/10.1016/j.jenvman.2023.118594" @default.
- W4384895673 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37473555" @default.
- W4384895673 hasPublicationYear "2023" @default.
- W4384895673 type Work @default.
- W4384895673 citedByCount "0" @default.
- W4384895673 crossrefType "journal-article" @default.
- W4384895673 hasAuthorship W4384895673A5021389231 @default.
- W4384895673 hasAuthorship W4384895673A5058018694 @default.
- W4384895673 hasAuthorship W4384895673A5062759774 @default.
- W4384895673 hasAuthorship W4384895673A5092504022 @default.
- W4384895673 hasBestOaLocation W43848956731 @default.
- W4384895673 hasConcept C119857082 @default.
- W4384895673 hasConcept C12267149 @default.
- W4384895673 hasConcept C124101348 @default.
- W4384895673 hasConcept C154945302 @default.
- W4384895673 hasConcept C169258074 @default.
- W4384895673 hasConcept C179717631 @default.
- W4384895673 hasConcept C41008148 @default.
- W4384895673 hasConcept C50644808 @default.
- W4384895673 hasConcept C60908668 @default.
- W4384895673 hasConcept C70153297 @default.
- W4384895673 hasConcept C739882 @default.
- W4384895673 hasConcept C84525736 @default.
- W4384895673 hasConceptScore W4384895673C119857082 @default.
- W4384895673 hasConceptScore W4384895673C12267149 @default.
- W4384895673 hasConceptScore W4384895673C124101348 @default.
- W4384895673 hasConceptScore W4384895673C154945302 @default.
- W4384895673 hasConceptScore W4384895673C169258074 @default.
- W4384895673 hasConceptScore W4384895673C179717631 @default.
- W4384895673 hasConceptScore W4384895673C41008148 @default.
- W4384895673 hasConceptScore W4384895673C50644808 @default.
- W4384895673 hasConceptScore W4384895673C60908668 @default.
- W4384895673 hasConceptScore W4384895673C70153297 @default.
- W4384895673 hasConceptScore W4384895673C739882 @default.
- W4384895673 hasConceptScore W4384895673C84525736 @default.
- W4384895673 hasLocation W43848956731 @default.
- W4384895673 hasLocation W43848956732 @default.
- W4384895673 hasOpenAccess W4384895673 @default.
- W4384895673 hasPrimaryLocation W43848956731 @default.
- W4384895673 hasRelatedWork W2019891950 @default.
- W4384895673 hasRelatedWork W2076543106 @default.
- W4384895673 hasRelatedWork W2085842814 @default.
- W4384895673 hasRelatedWork W2523437662 @default.
- W4384895673 hasRelatedWork W2994772185 @default.
- W4384895673 hasRelatedWork W3127117601 @default.
- W4384895673 hasRelatedWork W4205227215 @default.
- W4384895673 hasRelatedWork W4293093830 @default.
- W4384895673 hasRelatedWork W4311326873 @default.
- W4384895673 hasRelatedWork W4313424649 @default.
- W4384895673 hasVolume "344" @default.
- W4384895673 isParatext "false" @default.
- W4384895673 isRetracted "false" @default.
- W4384895673 workType "article" @default.