Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384914181> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4384914181 endingPage "732" @default.
- W4384914181 startingPage "720" @default.
- W4384914181 abstract "A new approach to inpainting problems that combines domain decomposition methods (DDM) with deep neural networks (DNN) to solve partial differential equations (PDE) is presented. First, this article examines different existing and emerging approaches to inpainting while emphasizing their advantages and disadvantages in a unified framework. After that, we introduce an algorithm that highlights the combination of DDM and DNN techniques for solving PDEs of a proposed mathematical inpainting model. For this model, the modified approach that has been adopted uses the DNN method which is based on convolutional neural networks (CNN) to reduce the computational cost in our algorithm while maintaining accuracy. Finally, the experimental results show that our method significantly outperforms existing ones for high-resolution images in paint stains." @default.
- W4384914181 created "2023-07-21" @default.
- W4384914181 creator A5036413461 @default.
- W4384914181 creator A5044322602 @default.
- W4384914181 creator A5046650862 @default.
- W4384914181 date "2023-01-01" @default.
- W4384914181 modified "2023-09-24" @default.
- W4384914181 title "Enhancing image inpainting through image decomposition and deep neural networks" @default.
- W4384914181 cites W1535934056 @default.
- W4384914181 cites W1963743024 @default.
- W4384914181 cites W1974705324 @default.
- W4384914181 cites W2104126767 @default.
- W4384914181 cites W2117281050 @default.
- W4384914181 cites W2141696759 @default.
- W4384914181 cites W2295936755 @default.
- W4384914181 cites W2520481533 @default.
- W4384914181 cites W2590183630 @default.
- W4384914181 cites W2931819295 @default.
- W4384914181 cites W3011806874 @default.
- W4384914181 cites W3034419329 @default.
- W4384914181 cites W3035512475 @default.
- W4384914181 cites W3105938520 @default.
- W4384914181 cites W3118356434 @default.
- W4384914181 cites W3133531783 @default.
- W4384914181 cites W3158999687 @default.
- W4384914181 cites W3199471029 @default.
- W4384914181 cites W4205808776 @default.
- W4384914181 cites W4245888765 @default.
- W4384914181 cites W4285287813 @default.
- W4384914181 cites W4285296634 @default.
- W4384914181 cites W4292246971 @default.
- W4384914181 cites W4293171766 @default.
- W4384914181 cites W4293580299 @default.
- W4384914181 cites W4297896551 @default.
- W4384914181 cites W4312722235 @default.
- W4384914181 cites W4313186194 @default.
- W4384914181 doi "https://doi.org/10.23939/mmc2023.03.720" @default.
- W4384914181 hasPublicationYear "2023" @default.
- W4384914181 type Work @default.
- W4384914181 citedByCount "0" @default.
- W4384914181 crossrefType "journal-article" @default.
- W4384914181 hasAuthorship W4384914181A5036413461 @default.
- W4384914181 hasAuthorship W4384914181A5044322602 @default.
- W4384914181 hasAuthorship W4384914181A5046650862 @default.
- W4384914181 hasBestOaLocation W43849141811 @default.
- W4384914181 hasConcept C108583219 @default.
- W4384914181 hasConcept C11413529 @default.
- W4384914181 hasConcept C115961682 @default.
- W4384914181 hasConcept C11727466 @default.
- W4384914181 hasConcept C124681953 @default.
- W4384914181 hasConcept C134306372 @default.
- W4384914181 hasConcept C153180895 @default.
- W4384914181 hasConcept C154945302 @default.
- W4384914181 hasConcept C18903297 @default.
- W4384914181 hasConcept C33923547 @default.
- W4384914181 hasConcept C36503486 @default.
- W4384914181 hasConcept C41008148 @default.
- W4384914181 hasConcept C50644808 @default.
- W4384914181 hasConcept C81363708 @default.
- W4384914181 hasConcept C86803240 @default.
- W4384914181 hasConcept C93779851 @default.
- W4384914181 hasConceptScore W4384914181C108583219 @default.
- W4384914181 hasConceptScore W4384914181C11413529 @default.
- W4384914181 hasConceptScore W4384914181C115961682 @default.
- W4384914181 hasConceptScore W4384914181C11727466 @default.
- W4384914181 hasConceptScore W4384914181C124681953 @default.
- W4384914181 hasConceptScore W4384914181C134306372 @default.
- W4384914181 hasConceptScore W4384914181C153180895 @default.
- W4384914181 hasConceptScore W4384914181C154945302 @default.
- W4384914181 hasConceptScore W4384914181C18903297 @default.
- W4384914181 hasConceptScore W4384914181C33923547 @default.
- W4384914181 hasConceptScore W4384914181C36503486 @default.
- W4384914181 hasConceptScore W4384914181C41008148 @default.
- W4384914181 hasConceptScore W4384914181C50644808 @default.
- W4384914181 hasConceptScore W4384914181C81363708 @default.
- W4384914181 hasConceptScore W4384914181C86803240 @default.
- W4384914181 hasConceptScore W4384914181C93779851 @default.
- W4384914181 hasIssue "3" @default.
- W4384914181 hasLocation W43849141811 @default.
- W4384914181 hasOpenAccess W4384914181 @default.
- W4384914181 hasPrimaryLocation W43849141811 @default.
- W4384914181 hasRelatedWork W2005185696 @default.
- W4384914181 hasRelatedWork W2731899572 @default.
- W4384914181 hasRelatedWork W2738221750 @default.
- W4384914181 hasRelatedWork W3116150086 @default.
- W4384914181 hasRelatedWork W3133861977 @default.
- W4384914181 hasRelatedWork W3156786002 @default.
- W4384914181 hasRelatedWork W4200173597 @default.
- W4384914181 hasRelatedWork W4312417841 @default.
- W4384914181 hasRelatedWork W4321369474 @default.
- W4384914181 hasRelatedWork W564581980 @default.
- W4384914181 hasVolume "10" @default.
- W4384914181 isParatext "false" @default.
- W4384914181 isRetracted "false" @default.
- W4384914181 workType "article" @default.