Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384916883> ?p ?o ?g. }
- W4384916883 endingPage "20149" @default.
- W4384916883 startingPage "20137" @default.
- W4384916883 abstract "Indoor human-carried object detection refers to the use of technologies and methods to detect objects that may be carried by individuals in indoor environments. This can include weapons, explosives, drugs, or other contraband that may endanger the safety and security of individuals or facilities. Detecting potential threats carried by individuals inside buildings is thus a critical and ongoing requirement in a variety of settings, including airports, schools, railway stations, and other public places. It is extremely challenging to detect these objects accurately using noncontact methods. Here, we present a noncontact carry object detection method based on mmWave radar and machine learning. We adopted a tree-based feature selection to reduce the complexity and increase the reliability of the detection process. The performance of the proposed approach has been compared to that of various state-of-the-art approaches. Finally, we deployed the models on various edge computing platforms, including Raspberry Pi, Nvidia Jetson Nano, and AGX Xavier." @default.
- W4384916883 created "2023-07-21" @default.
- W4384916883 creator A5014288820 @default.
- W4384916883 creator A5037174866 @default.
- W4384916883 creator A5059598217 @default.
- W4384916883 date "2023-09-01" @default.
- W4384916883 modified "2023-10-17" @default.
- W4384916883 title "Carry Object Detection Utilizing mmWave Radar Sensors and Ensemble-Based Extra Tree Classifiers on the Edge Computing Systems" @default.
- W4384916883 cites W1504174558 @default.
- W4384916883 cites W2000424176 @default.
- W4384916883 cites W2026132198 @default.
- W4384916883 cites W2033215809 @default.
- W4384916883 cites W2034154064 @default.
- W4384916883 cites W2054191429 @default.
- W4384916883 cites W2056132907 @default.
- W4384916883 cites W2056696564 @default.
- W4384916883 cites W2065041047 @default.
- W4384916883 cites W2065579036 @default.
- W4384916883 cites W2081088389 @default.
- W4384916883 cites W2095856320 @default.
- W4384916883 cites W2102313021 @default.
- W4384916883 cites W2116441382 @default.
- W4384916883 cites W2121194654 @default.
- W4384916883 cites W2125283600 @default.
- W4384916883 cites W2150524035 @default.
- W4384916883 cites W2150558863 @default.
- W4384916883 cites W2155684415 @default.
- W4384916883 cites W2207718193 @default.
- W4384916883 cites W2469690627 @default.
- W4384916883 cites W2734962015 @default.
- W4384916883 cites W2739974641 @default.
- W4384916883 cites W2794626975 @default.
- W4384916883 cites W2893047521 @default.
- W4384916883 cites W2914353073 @default.
- W4384916883 cites W2918680972 @default.
- W4384916883 cites W2962970995 @default.
- W4384916883 cites W2963150697 @default.
- W4384916883 cites W2969863169 @default.
- W4384916883 cites W2970952145 @default.
- W4384916883 cites W2975605169 @default.
- W4384916883 cites W3011788719 @default.
- W4384916883 cites W3012303644 @default.
- W4384916883 cites W3019048729 @default.
- W4384916883 cites W3038070101 @default.
- W4384916883 cites W3094378154 @default.
- W4384916883 cites W3100325602 @default.
- W4384916883 cites W3112289272 @default.
- W4384916883 cites W3118660027 @default.
- W4384916883 cites W3132626268 @default.
- W4384916883 cites W3159956652 @default.
- W4384916883 cites W3173882198 @default.
- W4384916883 cites W3177118333 @default.
- W4384916883 cites W3184018610 @default.
- W4384916883 cites W3202090009 @default.
- W4384916883 cites W3208108237 @default.
- W4384916883 doi "https://doi.org/10.1109/jsen.2023.3295574" @default.
- W4384916883 hasPublicationYear "2023" @default.
- W4384916883 type Work @default.
- W4384916883 citedByCount "0" @default.
- W4384916883 crossrefType "journal-article" @default.
- W4384916883 hasAuthorship W4384916883A5014288820 @default.
- W4384916883 hasAuthorship W4384916883A5037174866 @default.
- W4384916883 hasAuthorship W4384916883A5059598217 @default.
- W4384916883 hasConcept C111919701 @default.
- W4384916883 hasConcept C113174947 @default.
- W4384916883 hasConcept C121332964 @default.
- W4384916883 hasConcept C134306372 @default.
- W4384916883 hasConcept C136197465 @default.
- W4384916883 hasConcept C138885662 @default.
- W4384916883 hasConcept C153180895 @default.
- W4384916883 hasConcept C154945302 @default.
- W4384916883 hasConcept C162307627 @default.
- W4384916883 hasConcept C163258240 @default.
- W4384916883 hasConcept C2776151529 @default.
- W4384916883 hasConcept C2776401178 @default.
- W4384916883 hasConcept C2778456923 @default.
- W4384916883 hasConcept C2781238097 @default.
- W4384916883 hasConcept C31972630 @default.
- W4384916883 hasConcept C33923547 @default.
- W4384916883 hasConcept C41008148 @default.
- W4384916883 hasConcept C41895202 @default.
- W4384916883 hasConcept C43214815 @default.
- W4384916883 hasConcept C52622490 @default.
- W4384916883 hasConcept C554190296 @default.
- W4384916883 hasConcept C62520636 @default.
- W4384916883 hasConcept C76155785 @default.
- W4384916883 hasConcept C79403827 @default.
- W4384916883 hasConcept C98045186 @default.
- W4384916883 hasConceptScore W4384916883C111919701 @default.
- W4384916883 hasConceptScore W4384916883C113174947 @default.
- W4384916883 hasConceptScore W4384916883C121332964 @default.
- W4384916883 hasConceptScore W4384916883C134306372 @default.
- W4384916883 hasConceptScore W4384916883C136197465 @default.
- W4384916883 hasConceptScore W4384916883C138885662 @default.
- W4384916883 hasConceptScore W4384916883C153180895 @default.
- W4384916883 hasConceptScore W4384916883C154945302 @default.
- W4384916883 hasConceptScore W4384916883C162307627 @default.
- W4384916883 hasConceptScore W4384916883C163258240 @default.