Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384919698> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4384919698 abstract "We study dynamic algorithms in the model of algorithms with predictions. We assume the algorithm is given imperfect predictions regarding future updates, and we ask how such predictions can be used to improve the running time. This can be seen as a model interpolating between classic online and offline dynamic algorithms. Our results give smooth tradeoffs between these two extreme settings. First, we give algorithms for incremental and decremental transitive closure and approximate APSP that take as an additional input a predicted sequence of updates (edge insertions, or edge deletions, respectively). They preprocess it in $tilde{O}(n^{(3+omega)/2})$ time, and then handle updates in $tilde{O}(1)$ worst-case time and queries in $tilde{O}(eta^2)$ worst-case time. Here $eta$ is an error measure that can be bounded by the maximum difference between the predicted and actual insertion (deletion) time of an edge, i.e., by the $ell_infty$-error of the predictions. The second group of results concerns fully dynamic problems with vertex updates, where the algorithm has access to a predicted sequence of the next $n$ updates. We show how to solve fully dynamic triangle detection, maximum matching, single-source reachability, and more, in $O(n^{omega-1}+neta_i)$ worst-case update time. Here $eta_i$ denotes how much earlier the $i$-th update occurs than predicted. Our last result is a reduction that transforms a worst-case incremental algorithm without predictions into a fully dynamic algorithm which is given a predicted deletion time for each element at the time of its insertion. As a consequence we can, e.g., maintain fully dynamic exact APSP with such predictions in $tilde{O}(n^2)$ worst-case vertex insertion time and $tilde{O}(n^2 (1+eta_i))$ worst-case vertex deletion time (for the prediction error $eta_i$ defined as above)." @default.
- W4384919698 created "2023-07-21" @default.
- W4384919698 creator A5012259594 @default.
- W4384919698 creator A5054956160 @default.
- W4384919698 creator A5058859965 @default.
- W4384919698 creator A5064315511 @default.
- W4384919698 date "2023-07-19" @default.
- W4384919698 modified "2023-09-29" @default.
- W4384919698 title "On Dynamic Graph Algorithms with Predictions" @default.
- W4384919698 doi "https://doi.org/10.48550/arxiv.2307.09961" @default.
- W4384919698 hasPublicationYear "2023" @default.
- W4384919698 type Work @default.
- W4384919698 citedByCount "0" @default.
- W4384919698 crossrefType "posted-content" @default.
- W4384919698 hasAuthorship W4384919698A5012259594 @default.
- W4384919698 hasAuthorship W4384919698A5054956160 @default.
- W4384919698 hasAuthorship W4384919698A5058859965 @default.
- W4384919698 hasAuthorship W4384919698A5064315511 @default.
- W4384919698 hasBestOaLocation W43849196981 @default.
- W4384919698 hasConcept C105795698 @default.
- W4384919698 hasConcept C11413529 @default.
- W4384919698 hasConcept C114614502 @default.
- W4384919698 hasConcept C118615104 @default.
- W4384919698 hasConcept C121332964 @default.
- W4384919698 hasConcept C132525143 @default.
- W4384919698 hasConcept C134306372 @default.
- W4384919698 hasConcept C136643341 @default.
- W4384919698 hasConcept C154945302 @default.
- W4384919698 hasConcept C162307627 @default.
- W4384919698 hasConcept C165064840 @default.
- W4384919698 hasConcept C2778112365 @default.
- W4384919698 hasConcept C2779557605 @default.
- W4384919698 hasConcept C33923547 @default.
- W4384919698 hasConcept C34388435 @default.
- W4384919698 hasConcept C41008148 @default.
- W4384919698 hasConcept C54355233 @default.
- W4384919698 hasConcept C62520636 @default.
- W4384919698 hasConcept C80899671 @default.
- W4384919698 hasConcept C86803240 @default.
- W4384919698 hasConcept C99580578 @default.
- W4384919698 hasConceptScore W4384919698C105795698 @default.
- W4384919698 hasConceptScore W4384919698C11413529 @default.
- W4384919698 hasConceptScore W4384919698C114614502 @default.
- W4384919698 hasConceptScore W4384919698C118615104 @default.
- W4384919698 hasConceptScore W4384919698C121332964 @default.
- W4384919698 hasConceptScore W4384919698C132525143 @default.
- W4384919698 hasConceptScore W4384919698C134306372 @default.
- W4384919698 hasConceptScore W4384919698C136643341 @default.
- W4384919698 hasConceptScore W4384919698C154945302 @default.
- W4384919698 hasConceptScore W4384919698C162307627 @default.
- W4384919698 hasConceptScore W4384919698C165064840 @default.
- W4384919698 hasConceptScore W4384919698C2778112365 @default.
- W4384919698 hasConceptScore W4384919698C2779557605 @default.
- W4384919698 hasConceptScore W4384919698C33923547 @default.
- W4384919698 hasConceptScore W4384919698C34388435 @default.
- W4384919698 hasConceptScore W4384919698C41008148 @default.
- W4384919698 hasConceptScore W4384919698C54355233 @default.
- W4384919698 hasConceptScore W4384919698C62520636 @default.
- W4384919698 hasConceptScore W4384919698C80899671 @default.
- W4384919698 hasConceptScore W4384919698C86803240 @default.
- W4384919698 hasConceptScore W4384919698C99580578 @default.
- W4384919698 hasLocation W43849196981 @default.
- W4384919698 hasOpenAccess W4384919698 @default.
- W4384919698 hasPrimaryLocation W43849196981 @default.
- W4384919698 hasRelatedWork W1985880617 @default.
- W4384919698 hasRelatedWork W2026407613 @default.
- W4384919698 hasRelatedWork W2052136967 @default.
- W4384919698 hasRelatedWork W2061471762 @default.
- W4384919698 hasRelatedWork W2259692984 @default.
- W4384919698 hasRelatedWork W2374778222 @default.
- W4384919698 hasRelatedWork W2604647807 @default.
- W4384919698 hasRelatedWork W2896357665 @default.
- W4384919698 hasRelatedWork W4300812862 @default.
- W4384919698 hasRelatedWork W4301018421 @default.
- W4384919698 isParatext "false" @default.
- W4384919698 isRetracted "false" @default.
- W4384919698 workType "article" @default.