Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384920171> ?p ?o ?g. }
- W4384920171 endingPage "e18511" @default.
- W4384920171 startingPage "e18511" @default.
- W4384920171 abstract "Trace metals present in high amounts in aquatic systems are a perpetual concern. This study applied geostatistical and machine learning models namely Ordinary Kriging (OK), Ordinary Cokriging (OCK) and Artificial Neural Network (ANN) to assess the spatial variability of trace metals and pollution indices in surface sediments along the Lom River in an abandoned gold mining site at Bekao (Adamawa Cameroon). For this purpose, thirty-one (31) surface sediment samples are collected in order to determine the total concentrations of As, Cr, Cu, Fe, Mn, Ni, Pb, Sn and Zn. These trace metals are used to compute pollution indices as the sediment pollution index (SPI), the Nemerow index (NI), the modified contamination degree (mCD), and the potential ecological risk assessment (RI). OK, OCK and ANN models are compared to determine the best model performance. The best models are selected based on the values of the root mean square error (RMSE), the coefficient of determination (R2), the scatter index (SI) and the BIAS. Results showed that the sequence of trace metal mean concentrations in the sediments is Fe > Mn > Cu > Ni > Sn > Cr > Zn > Pb > As. The mean concentrations of Ni, Cu, Zn and Sn are above the average shale values (ASV) and the pollution status is globally moderate to significant with a low potential ecological risk. The spatial dependency obtained with semivariogram models are moderate to weak for Mn, Fe, Ni, Pb, SPI, NI, mCD, RI As, Cr, and Sn and strong for Cu and Zn. According to cross-validation parameters, ANN model is the best method for the prediction on trace metal concentrations and pollution indices in surface sediments along the Lom River in the abandoned gold mining site of Bekao." @default.
- W4384920171 created "2023-07-21" @default.
- W4384920171 creator A5010964064 @default.
- W4384920171 creator A5038222944 @default.
- W4384920171 creator A5049835393 @default.
- W4384920171 creator A5071962014 @default.
- W4384920171 creator A5082923584 @default.
- W4384920171 creator A5092506310 @default.
- W4384920171 creator A5092506311 @default.
- W4384920171 date "2023-08-01" @default.
- W4384920171 modified "2023-10-06" @default.
- W4384920171 title "A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon" @default.
- W4384920171 cites W1481002158 @default.
- W4384920171 cites W1901495789 @default.
- W4384920171 cites W1972568665 @default.
- W4384920171 cites W1989767924 @default.
- W4384920171 cites W2023405953 @default.
- W4384920171 cites W2024141630 @default.
- W4384920171 cites W2028003655 @default.
- W4384920171 cites W2031674205 @default.
- W4384920171 cites W2032233476 @default.
- W4384920171 cites W2040527207 @default.
- W4384920171 cites W2049443361 @default.
- W4384920171 cites W2059245554 @default.
- W4384920171 cites W2064491492 @default.
- W4384920171 cites W2077750106 @default.
- W4384920171 cites W2079460625 @default.
- W4384920171 cites W2082530523 @default.
- W4384920171 cites W2089752948 @default.
- W4384920171 cites W2090103171 @default.
- W4384920171 cites W2106472612 @default.
- W4384920171 cites W2113085009 @default.
- W4384920171 cites W2115723122 @default.
- W4384920171 cites W2151374861 @default.
- W4384920171 cites W2163141038 @default.
- W4384920171 cites W2551325900 @default.
- W4384920171 cites W2559967234 @default.
- W4384920171 cites W2789731168 @default.
- W4384920171 cites W2897196768 @default.
- W4384920171 cites W2903540904 @default.
- W4384920171 cites W2939812942 @default.
- W4384920171 cites W2945889143 @default.
- W4384920171 cites W3006605730 @default.
- W4384920171 cites W3014308832 @default.
- W4384920171 cites W3042432682 @default.
- W4384920171 cites W3085485679 @default.
- W4384920171 cites W3086056576 @default.
- W4384920171 cites W3158601697 @default.
- W4384920171 cites W3174089940 @default.
- W4384920171 cites W3201683286 @default.
- W4384920171 cites W4220745881 @default.
- W4384920171 cites W4225776877 @default.
- W4384920171 cites W4285605770 @default.
- W4384920171 cites W4293795547 @default.
- W4384920171 cites W4367625144 @default.
- W4384920171 doi "https://doi.org/10.1016/j.heliyon.2023.e18511" @default.
- W4384920171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37576237" @default.
- W4384920171 hasPublicationYear "2023" @default.
- W4384920171 type Work @default.
- W4384920171 citedByCount "0" @default.
- W4384920171 crossrefType "journal-article" @default.
- W4384920171 hasAuthorship W4384920171A5010964064 @default.
- W4384920171 hasAuthorship W4384920171A5038222944 @default.
- W4384920171 hasAuthorship W4384920171A5049835393 @default.
- W4384920171 hasAuthorship W4384920171A5071962014 @default.
- W4384920171 hasAuthorship W4384920171A5082923584 @default.
- W4384920171 hasAuthorship W4384920171A5092506310 @default.
- W4384920171 hasAuthorship W4384920171A5092506311 @default.
- W4384920171 hasBestOaLocation W43849201711 @default.
- W4384920171 hasConcept C105795698 @default.
- W4384920171 hasConcept C107872376 @default.
- W4384920171 hasConcept C114793014 @default.
- W4384920171 hasConcept C127313418 @default.
- W4384920171 hasConcept C128990827 @default.
- W4384920171 hasConcept C139945424 @default.
- W4384920171 hasConcept C154881674 @default.
- W4384920171 hasConcept C159390177 @default.
- W4384920171 hasConcept C185592680 @default.
- W4384920171 hasConcept C187320778 @default.
- W4384920171 hasConcept C18903297 @default.
- W4384920171 hasConcept C191897082 @default.
- W4384920171 hasConcept C192562407 @default.
- W4384920171 hasConcept C2778566039 @default.
- W4384920171 hasConcept C2816523 @default.
- W4384920171 hasConcept C33923547 @default.
- W4384920171 hasConcept C39432304 @default.
- W4384920171 hasConcept C521259446 @default.
- W4384920171 hasConcept C544153396 @default.
- W4384920171 hasConcept C76886044 @default.
- W4384920171 hasConcept C81692654 @default.
- W4384920171 hasConcept C86803240 @default.
- W4384920171 hasConcept C94747663 @default.
- W4384920171 hasConceptScore W4384920171C105795698 @default.
- W4384920171 hasConceptScore W4384920171C107872376 @default.
- W4384920171 hasConceptScore W4384920171C114793014 @default.
- W4384920171 hasConceptScore W4384920171C127313418 @default.
- W4384920171 hasConceptScore W4384920171C128990827 @default.
- W4384920171 hasConceptScore W4384920171C139945424 @default.