Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384922969> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4384922969 endingPage "12" @default.
- W4384922969 startingPage "1" @default.
- W4384922969 abstract "Finding network biomarkers from gene co-expression networks (GCNs) has attracted a lot of research interest. A network biomarker is a topological module, i.e., a group of densely connected nodes in a GCN, in which the gene expression values correlate with sample labels. Compared with biomarkers based on single genes, network biomarkers are not only more robust in separating samples from different categories, but are also able to better interpret the molecular mechanism of the disease. The previous network biomarker detection methods either employ distance based clustering methods or search for cliques in a GCN to detect topological modules. The first strategy assumes that the topological modules should be spherical in shape, and the second strategy requires all nodes to be fully connected. However, the relations between genes are complex, as a result, genes in the same biological process may not be directly, strongly connected. Therefore, the shapes of those modules could be oval or long strips. Hence, the shapes of gene functional modules and gene disease modules may not meet the aforementioned constraints in the previous methods. Thus, previous methods may break up the genes belonging to the same biological process into different topological modules due to those constraints. To address this issue, we propose a novel network biomarker detection method by using Gaussian mixture model clustering which allows more flexibility in the shapes of the topological modules. We have evaluated the performance of our method on a set of eight TCGA cancer datasets. The results show that our method can detect network modules that possess better discriminate power, and provide biological insights." @default.
- W4384922969 created "2023-07-22" @default.
- W4384922969 creator A5011186506 @default.
- W4384922969 creator A5029283101 @default.
- W4384922969 creator A5050852420 @default.
- W4384922969 creator A5052762681 @default.
- W4384922969 date "2023-01-01" @default.
- W4384922969 modified "2023-10-18" @default.
- W4384922969 title "Network Biomarker Detection from Gene Co-expression Network Using Gaussian Mixture Model Clustering" @default.
- W4384922969 doi "https://doi.org/10.1109/tcbb.2023.3297388" @default.
- W4384922969 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37471187" @default.
- W4384922969 hasPublicationYear "2023" @default.
- W4384922969 type Work @default.
- W4384922969 citedByCount "0" @default.
- W4384922969 crossrefType "journal-article" @default.
- W4384922969 hasAuthorship W4384922969A5011186506 @default.
- W4384922969 hasAuthorship W4384922969A5029283101 @default.
- W4384922969 hasAuthorship W4384922969A5050852420 @default.
- W4384922969 hasAuthorship W4384922969A5052762681 @default.
- W4384922969 hasConcept C104317684 @default.
- W4384922969 hasConcept C114614502 @default.
- W4384922969 hasConcept C121332964 @default.
- W4384922969 hasConcept C124101348 @default.
- W4384922969 hasConcept C150194340 @default.
- W4384922969 hasConcept C153180895 @default.
- W4384922969 hasConcept C154945302 @default.
- W4384922969 hasConcept C163716315 @default.
- W4384922969 hasConcept C177264268 @default.
- W4384922969 hasConcept C184720557 @default.
- W4384922969 hasConcept C199360897 @default.
- W4384922969 hasConcept C2781197716 @default.
- W4384922969 hasConcept C33923547 @default.
- W4384922969 hasConcept C41008148 @default.
- W4384922969 hasConcept C54355233 @default.
- W4384922969 hasConcept C61224824 @default.
- W4384922969 hasConcept C62520636 @default.
- W4384922969 hasConcept C67339327 @default.
- W4384922969 hasConcept C70721500 @default.
- W4384922969 hasConcept C73555534 @default.
- W4384922969 hasConcept C86803240 @default.
- W4384922969 hasConceptScore W4384922969C104317684 @default.
- W4384922969 hasConceptScore W4384922969C114614502 @default.
- W4384922969 hasConceptScore W4384922969C121332964 @default.
- W4384922969 hasConceptScore W4384922969C124101348 @default.
- W4384922969 hasConceptScore W4384922969C150194340 @default.
- W4384922969 hasConceptScore W4384922969C153180895 @default.
- W4384922969 hasConceptScore W4384922969C154945302 @default.
- W4384922969 hasConceptScore W4384922969C163716315 @default.
- W4384922969 hasConceptScore W4384922969C177264268 @default.
- W4384922969 hasConceptScore W4384922969C184720557 @default.
- W4384922969 hasConceptScore W4384922969C199360897 @default.
- W4384922969 hasConceptScore W4384922969C2781197716 @default.
- W4384922969 hasConceptScore W4384922969C33923547 @default.
- W4384922969 hasConceptScore W4384922969C41008148 @default.
- W4384922969 hasConceptScore W4384922969C54355233 @default.
- W4384922969 hasConceptScore W4384922969C61224824 @default.
- W4384922969 hasConceptScore W4384922969C62520636 @default.
- W4384922969 hasConceptScore W4384922969C67339327 @default.
- W4384922969 hasConceptScore W4384922969C70721500 @default.
- W4384922969 hasConceptScore W4384922969C73555534 @default.
- W4384922969 hasConceptScore W4384922969C86803240 @default.
- W4384922969 hasLocation W43849229691 @default.
- W4384922969 hasLocation W43849229692 @default.
- W4384922969 hasOpenAccess W4384922969 @default.
- W4384922969 hasPrimaryLocation W43849229691 @default.
- W4384922969 hasRelatedWork W1547016179 @default.
- W4384922969 hasRelatedWork W2082398846 @default.
- W4384922969 hasRelatedWork W2097729189 @default.
- W4384922969 hasRelatedWork W2125776881 @default.
- W4384922969 hasRelatedWork W2370909876 @default.
- W4384922969 hasRelatedWork W2891787551 @default.
- W4384922969 hasRelatedWork W2952250845 @default.
- W4384922969 hasRelatedWork W2954309397 @default.
- W4384922969 hasRelatedWork W4205136210 @default.
- W4384922969 hasRelatedWork W421912185 @default.
- W4384922969 isParatext "false" @default.
- W4384922969 isRetracted "false" @default.
- W4384922969 workType "article" @default.