Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384927182> ?p ?o ?g. }
- W4384927182 endingPage "103496" @default.
- W4384927182 startingPage "103496" @default.
- W4384927182 abstract "This paper presents a novel active learning surrogate model for estimating low failure probability in the reliability analysis of complex structures based on a radial basis function neural network (RBFNN). The RBFNN surrogate model, which possesses global approximation capability, is constructed by randomly selecting an initial design of experiments (DoEs) from a Monte Carlo Simulation (MCS) population using the minimax distance method. Furthermore, the RBFNN surrogate model is updated by sequentially adding highly representative samples to improve the local prediction accuracy. The highly representative samples are selected using minimax distance method from each level’s failure region of subset simulation (SS), and are further modified by the calculation of actual limit state function (LSF). Consequently, the low failure probability is obtained through an iterative framework that combines SS and RBFNN surrogate model. The proposed approach significantly reduces the number of experiments required, resulting in lower costs and higher efficiency. Three examples are provided to demonstrate the effectiveness and accuracy of the proposed method." @default.
- W4384927182 created "2023-07-22" @default.
- W4384927182 creator A5034101348 @default.
- W4384927182 creator A5038799336 @default.
- W4384927182 creator A5043969585 @default.
- W4384927182 creator A5050761708 @default.
- W4384927182 date "2023-10-01" @default.
- W4384927182 modified "2023-10-15" @default.
- W4384927182 title "A RBFNN based active learning surrogate model for evaluating low failure probability in reliability analysis" @default.
- W4384927182 cites W1973633406 @default.
- W4384927182 cites W1996817959 @default.
- W4384927182 cites W1999091229 @default.
- W4384927182 cites W2003094496 @default.
- W4384927182 cites W2003986068 @default.
- W4384927182 cites W2013524106 @default.
- W4384927182 cites W2015731569 @default.
- W4384927182 cites W2036887764 @default.
- W4384927182 cites W2040404518 @default.
- W4384927182 cites W2057534236 @default.
- W4384927182 cites W2067829701 @default.
- W4384927182 cites W2074337916 @default.
- W4384927182 cites W2080240494 @default.
- W4384927182 cites W2498977495 @default.
- W4384927182 cites W2605300842 @default.
- W4384927182 cites W2767681036 @default.
- W4384927182 cites W2913046542 @default.
- W4384927182 cites W3001009582 @default.
- W4384927182 cites W3005181638 @default.
- W4384927182 cites W3161290685 @default.
- W4384927182 cites W3176394545 @default.
- W4384927182 cites W3177035634 @default.
- W4384927182 cites W3209589796 @default.
- W4384927182 cites W4205435717 @default.
- W4384927182 cites W4206421880 @default.
- W4384927182 cites W4220785730 @default.
- W4384927182 cites W4281774146 @default.
- W4384927182 doi "https://doi.org/10.1016/j.probengmech.2023.103496" @default.
- W4384927182 hasPublicationYear "2023" @default.
- W4384927182 type Work @default.
- W4384927182 citedByCount "0" @default.
- W4384927182 crossrefType "journal-article" @default.
- W4384927182 hasAuthorship W4384927182A5034101348 @default.
- W4384927182 hasAuthorship W4384927182A5038799336 @default.
- W4384927182 hasAuthorship W4384927182A5043969585 @default.
- W4384927182 hasAuthorship W4384927182A5050761708 @default.
- W4384927182 hasConcept C105795698 @default.
- W4384927182 hasConcept C11413529 @default.
- W4384927182 hasConcept C119857082 @default.
- W4384927182 hasConcept C121332964 @default.
- W4384927182 hasConcept C126255220 @default.
- W4384927182 hasConcept C131675550 @default.
- W4384927182 hasConcept C14036430 @default.
- W4384927182 hasConcept C144024400 @default.
- W4384927182 hasConcept C149728462 @default.
- W4384927182 hasConcept C149923435 @default.
- W4384927182 hasConcept C154945302 @default.
- W4384927182 hasConcept C163258240 @default.
- W4384927182 hasConcept C19499675 @default.
- W4384927182 hasConcept C2908647359 @default.
- W4384927182 hasConcept C33923547 @default.
- W4384927182 hasConcept C41008148 @default.
- W4384927182 hasConcept C43214815 @default.
- W4384927182 hasConcept C50644808 @default.
- W4384927182 hasConcept C62520636 @default.
- W4384927182 hasConcept C78458016 @default.
- W4384927182 hasConcept C86803240 @default.
- W4384927182 hasConceptScore W4384927182C105795698 @default.
- W4384927182 hasConceptScore W4384927182C11413529 @default.
- W4384927182 hasConceptScore W4384927182C119857082 @default.
- W4384927182 hasConceptScore W4384927182C121332964 @default.
- W4384927182 hasConceptScore W4384927182C126255220 @default.
- W4384927182 hasConceptScore W4384927182C131675550 @default.
- W4384927182 hasConceptScore W4384927182C14036430 @default.
- W4384927182 hasConceptScore W4384927182C144024400 @default.
- W4384927182 hasConceptScore W4384927182C149728462 @default.
- W4384927182 hasConceptScore W4384927182C149923435 @default.
- W4384927182 hasConceptScore W4384927182C154945302 @default.
- W4384927182 hasConceptScore W4384927182C163258240 @default.
- W4384927182 hasConceptScore W4384927182C19499675 @default.
- W4384927182 hasConceptScore W4384927182C2908647359 @default.
- W4384927182 hasConceptScore W4384927182C33923547 @default.
- W4384927182 hasConceptScore W4384927182C41008148 @default.
- W4384927182 hasConceptScore W4384927182C43214815 @default.
- W4384927182 hasConceptScore W4384927182C50644808 @default.
- W4384927182 hasConceptScore W4384927182C62520636 @default.
- W4384927182 hasConceptScore W4384927182C78458016 @default.
- W4384927182 hasConceptScore W4384927182C86803240 @default.
- W4384927182 hasFunder F4320321001 @default.
- W4384927182 hasFunder F4320322843 @default.
- W4384927182 hasFunder F4320324780 @default.
- W4384927182 hasLocation W43849271821 @default.
- W4384927182 hasOpenAccess W4384927182 @default.
- W4384927182 hasPrimaryLocation W43849271821 @default.
- W4384927182 hasRelatedWork W2053378152 @default.
- W4384927182 hasRelatedWork W2323078854 @default.
- W4384927182 hasRelatedWork W2335109106 @default.
- W4384927182 hasRelatedWork W2354556970 @default.
- W4384927182 hasRelatedWork W2356915914 @default.