Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384927208> ?p ?o ?g. }
- W4384927208 endingPage "113361" @default.
- W4384927208 startingPage "113361" @default.
- W4384927208 abstract "The existing online inspection methods for hunting motion of high-speed trains are mainly based on processing the acceleration of bogie frames, which cannot directly and reliably reflect the safety conditions. This paper proposes a novel computer vision (CV) method, named the virtual point tracking (VPT) method, to detect the hunting motion by processing the dynamic wheel-rail contact video. First, some virtual points are defined on each frame of the captured video, then the coordinates of these virtual points are automatically located by a deep learning model, and finally, the relative displacement between these coordinates is calculated. Two experiments demonstrate that the VPT method can accurately determine the hunting frequency and detect changes in the pixel coordinates corresponding to key positions of the wheel and the rail. Besides, a VPT method with Canny edge detection is introduced for comparison, and the results demonstrate that the VPT method is superior." @default.
- W4384927208 created "2023-07-22" @default.
- W4384927208 creator A5001664778 @default.
- W4384927208 creator A5015169537 @default.
- W4384927208 creator A5031027528 @default.
- W4384927208 creator A5032383083 @default.
- W4384927208 creator A5067327701 @default.
- W4384927208 creator A5072751960 @default.
- W4384927208 creator A5090658963 @default.
- W4384927208 creator A5081772778 @default.
- W4384927208 date "2023-10-01" @default.
- W4384927208 modified "2023-10-11" @default.
- W4384927208 title "Computer vision for hunting stability inspection of high-speed trains" @default.
- W4384927208 cites W1901129140 @default.
- W4384927208 cites W2029308152 @default.
- W4384927208 cites W2079575177 @default.
- W4384927208 cites W2145023731 @default.
- W4384927208 cites W2194775991 @default.
- W4384927208 cites W2618530766 @default.
- W4384927208 cites W2788865504 @default.
- W4384927208 cites W2891288317 @default.
- W4384927208 cites W2913288102 @default.
- W4384927208 cites W2917013349 @default.
- W4384927208 cites W2963402313 @default.
- W4384927208 cites W3000322757 @default.
- W4384927208 cites W3005941821 @default.
- W4384927208 cites W3017099824 @default.
- W4384927208 cites W3018105153 @default.
- W4384927208 cites W3019596618 @default.
- W4384927208 cites W3033327301 @default.
- W4384927208 cites W3037408933 @default.
- W4384927208 cites W3117564224 @default.
- W4384927208 cites W3128538548 @default.
- W4384927208 cites W3173811519 @default.
- W4384927208 cites W3204295647 @default.
- W4384927208 cites W4210767179 @default.
- W4384927208 cites W4223649200 @default.
- W4384927208 cites W4244176596 @default.
- W4384927208 cites W4283071010 @default.
- W4384927208 cites W4285389602 @default.
- W4384927208 cites W4285605598 @default.
- W4384927208 cites W4288032970 @default.
- W4384927208 cites W4297860879 @default.
- W4384927208 cites W4313442276 @default.
- W4384927208 cites W4319319687 @default.
- W4384927208 cites W4327597030 @default.
- W4384927208 cites W4362465590 @default.
- W4384927208 cites W4366166761 @default.
- W4384927208 cites W4375857352 @default.
- W4384927208 doi "https://doi.org/10.1016/j.measurement.2023.113361" @default.
- W4384927208 hasPublicationYear "2023" @default.
- W4384927208 type Work @default.
- W4384927208 citedByCount "0" @default.
- W4384927208 crossrefType "journal-article" @default.
- W4384927208 hasAuthorship W4384927208A5001664778 @default.
- W4384927208 hasAuthorship W4384927208A5015169537 @default.
- W4384927208 hasAuthorship W4384927208A5031027528 @default.
- W4384927208 hasAuthorship W4384927208A5032383083 @default.
- W4384927208 hasAuthorship W4384927208A5067327701 @default.
- W4384927208 hasAuthorship W4384927208A5072751960 @default.
- W4384927208 hasAuthorship W4384927208A5081772778 @default.
- W4384927208 hasAuthorship W4384927208A5090658963 @default.
- W4384927208 hasConcept C104114177 @default.
- W4384927208 hasConcept C107551265 @default.
- W4384927208 hasConcept C111919701 @default.
- W4384927208 hasConcept C115961682 @default.
- W4384927208 hasConcept C117896860 @default.
- W4384927208 hasConcept C121332964 @default.
- W4384927208 hasConcept C126042441 @default.
- W4384927208 hasConcept C14705441 @default.
- W4384927208 hasConcept C154945302 @default.
- W4384927208 hasConcept C15744967 @default.
- W4384927208 hasConcept C160633673 @default.
- W4384927208 hasConcept C162307627 @default.
- W4384927208 hasConcept C190839683 @default.
- W4384927208 hasConcept C193536780 @default.
- W4384927208 hasConcept C19417346 @default.
- W4384927208 hasConcept C205649164 @default.
- W4384927208 hasConcept C2524010 @default.
- W4384927208 hasConcept C2775936607 @default.
- W4384927208 hasConcept C2779020251 @default.
- W4384927208 hasConcept C28719098 @default.
- W4384927208 hasConcept C31972630 @default.
- W4384927208 hasConcept C33923547 @default.
- W4384927208 hasConcept C41008148 @default.
- W4384927208 hasConcept C542102704 @default.
- W4384927208 hasConcept C58640448 @default.
- W4384927208 hasConcept C74650414 @default.
- W4384927208 hasConcept C76155785 @default.
- W4384927208 hasConcept C89992363 @default.
- W4384927208 hasConcept C9417928 @default.
- W4384927208 hasConceptScore W4384927208C104114177 @default.
- W4384927208 hasConceptScore W4384927208C107551265 @default.
- W4384927208 hasConceptScore W4384927208C111919701 @default.
- W4384927208 hasConceptScore W4384927208C115961682 @default.
- W4384927208 hasConceptScore W4384927208C117896860 @default.
- W4384927208 hasConceptScore W4384927208C121332964 @default.
- W4384927208 hasConceptScore W4384927208C126042441 @default.