Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384927232> ?p ?o ?g. }
- W4384927232 endingPage "124546" @default.
- W4384927232 startingPage "124546" @default.
- W4384927232 abstract "To effectively capture the low-concentration chemical warfare agents (CWAs) and their simulants which are extremely harmful to human health and environment, the properties of thousands of Computation-Ready, Experimental Metal-Organic Frameworks (CoRE-MOFs) for the adsorption and separation of four CWAs and simulants (dimethyl methyl phosphonate, soman, mustard gas, and 2-chloroethyl ethyl sulfide) from the air were calculated by high-throughput computational screening. To reasonably identify the top-performing MOFs, the trade-off between selectivity and adsorption capacity (TSN) was introduced to measure the properties of MOFs. Five machine learning algorithms were employed to quantitatively evaluate the structure-performance relationships of MOFs for the adsorption of CWAs and validate that Extreme Gradient Boosting algorithms had the best prediction accuracy. Furthermore, four MOF descriptors (henry coefficient, number of hydrogen bonds, porosity, and volumetric surface area) were found to have significant influence on the properties of MOFs. Finally, it was determined that the number of hydrogen bond acceptors was a key factor governing the co-adsorption of CWAs and their simulants, and the similarities of adsorbents with good adsorption performance included Zn for metal center, trimesic acid for organic linker, and srs for topology. The microscopic insights obtained from our bottom-up approach are very helpful for the development of MOFs and other nanoporous materials for the capture of CWAs from the air." @default.
- W4384927232 created "2023-07-22" @default.
- W4384927232 creator A5007255120 @default.
- W4384927232 creator A5014886144 @default.
- W4384927232 creator A5015958742 @default.
- W4384927232 creator A5033580717 @default.
- W4384927232 creator A5061711317 @default.
- W4384927232 creator A5070961992 @default.
- W4384927232 creator A5071243504 @default.
- W4384927232 creator A5084928295 @default.
- W4384927232 date "2023-11-01" @default.
- W4384927232 modified "2023-09-26" @default.
- W4384927232 title "Machine learning assisted high-throughput computational screening of MOFs for the capture of chemical warfare agents from the air" @default.
- W4384927232 cites W1964611609 @default.
- W4384927232 cites W1965090496 @default.
- W4384927232 cites W1969477949 @default.
- W4384927232 cites W1979564589 @default.
- W4384927232 cites W1999563896 @default.
- W4384927232 cites W2019074851 @default.
- W4384927232 cites W2025509912 @default.
- W4384927232 cites W2028991215 @default.
- W4384927232 cites W2030227917 @default.
- W4384927232 cites W2030971064 @default.
- W4384927232 cites W2031970651 @default.
- W4384927232 cites W2043011996 @default.
- W4384927232 cites W2053294416 @default.
- W4384927232 cites W2059412396 @default.
- W4384927232 cites W2064813633 @default.
- W4384927232 cites W2078402834 @default.
- W4384927232 cites W2084266203 @default.
- W4384927232 cites W2084711599 @default.
- W4384927232 cites W2144793412 @default.
- W4384927232 cites W2157942880 @default.
- W4384927232 cites W2158355140 @default.
- W4384927232 cites W2164043498 @default.
- W4384927232 cites W2203150883 @default.
- W4384927232 cites W2331113896 @default.
- W4384927232 cites W2512854743 @default.
- W4384927232 cites W2513814813 @default.
- W4384927232 cites W2562136744 @default.
- W4384927232 cites W2599379284 @default.
- W4384927232 cites W2755485480 @default.
- W4384927232 cites W2755898939 @default.
- W4384927232 cites W2760467790 @default.
- W4384927232 cites W2768239603 @default.
- W4384927232 cites W2783407105 @default.
- W4384927232 cites W2790308498 @default.
- W4384927232 cites W2798102190 @default.
- W4384927232 cites W2803116977 @default.
- W4384927232 cites W2807816861 @default.
- W4384927232 cites W2809372139 @default.
- W4384927232 cites W2884505386 @default.
- W4384927232 cites W2895808191 @default.
- W4384927232 cites W2910175903 @default.
- W4384927232 cites W2910406778 @default.
- W4384927232 cites W2914721866 @default.
- W4384927232 cites W2937946112 @default.
- W4384927232 cites W2957045513 @default.
- W4384927232 cites W2969079402 @default.
- W4384927232 cites W2973153050 @default.
- W4384927232 cites W2983028326 @default.
- W4384927232 cites W3012944652 @default.
- W4384927232 cites W3027894142 @default.
- W4384927232 cites W3112311257 @default.
- W4384927232 cites W3138848709 @default.
- W4384927232 cites W3150535350 @default.
- W4384927232 cites W3200445240 @default.
- W4384927232 cites W4206917537 @default.
- W4384927232 cites W4280554815 @default.
- W4384927232 cites W4280563420 @default.
- W4384927232 cites W941498786 @default.
- W4384927232 doi "https://doi.org/10.1016/j.seppur.2023.124546" @default.
- W4384927232 hasPublicationYear "2023" @default.
- W4384927232 type Work @default.
- W4384927232 citedByCount "0" @default.
- W4384927232 crossrefType "journal-article" @default.
- W4384927232 hasAuthorship W4384927232A5007255120 @default.
- W4384927232 hasAuthorship W4384927232A5014886144 @default.
- W4384927232 hasAuthorship W4384927232A5015958742 @default.
- W4384927232 hasAuthorship W4384927232A5033580717 @default.
- W4384927232 hasAuthorship W4384927232A5061711317 @default.
- W4384927232 hasAuthorship W4384927232A5070961992 @default.
- W4384927232 hasAuthorship W4384927232A5071243504 @default.
- W4384927232 hasAuthorship W4384927232A5084928295 @default.
- W4384927232 hasConcept C112887158 @default.
- W4384927232 hasConcept C127413603 @default.
- W4384927232 hasConcept C150394285 @default.
- W4384927232 hasConcept C171250308 @default.
- W4384927232 hasConcept C178790620 @default.
- W4384927232 hasConcept C179366358 @default.
- W4384927232 hasConcept C185592680 @default.
- W4384927232 hasConcept C192562407 @default.
- W4384927232 hasConcept C2778684945 @default.
- W4384927232 hasConcept C2780564542 @default.
- W4384927232 hasConcept C32909587 @default.
- W4384927232 hasConcept C42360764 @default.
- W4384927232 hasConcept C48940184 @default.
- W4384927232 hasConcept C518881349 @default.