Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384927417> ?p ?o ?g. }
- W4384927417 abstract "Millions of people die because of diabetes each year. Furthermore, most adults living with this condition are juggling with one or more other major health concerns. These related diseases also known as comorbidities, coexist with the primary disease, but also stand as their own specific disease. The challenge that healthcare professionals face is that Diabetes Mellitus (DM) is difficult to differentiate into its six forms. This hinders timely and accurate diagnosis and proper treatment. This paper presents our research in developing a novel Artificial Intelligence (AI) based approach to analyze data of real patients having different comorbidity diseases for interpretation and finding inferences for diagnosis and prognosis of DM and its comorbidities in patients in different scenarios. Details are provided about the data models used, relevant feature sets and their association rule mining, deep learning analytical models developed, and results validation against various accuracy measures. The performance of several big data analytics platforms was validated for the different models for three different sizes of endocrine datasets with varying parameters. The data models were mapped to HL7 FHIR v4 schema that is flexible in adapting to diagnostic models for all diseases. Out of several analytical models evaluated, Louvain Mani-Hierarchical Fold Learning (LMHFL) was found to be the most promising in terms of efficiency and accurate explainable diagnosis through reflective visualizations of associated features." @default.
- W4384927417 created "2023-07-22" @default.
- W4384927417 creator A5024866294 @default.
- W4384927417 creator A5033269031 @default.
- W4384927417 creator A5043544976 @default.
- W4384927417 creator A5052754946 @default.
- W4384927417 creator A5062268779 @default.
- W4384927417 date "2023-07-20" @default.
- W4384927417 modified "2023-09-27" @default.
- W4384927417 title "Rules Extraction, Diagnoses and Prognosis of Diabetes and its Comorbidities using Deep Learning Analytics with Semantics on Big Data" @default.
- W4384927417 cites W1770604065 @default.
- W4384927417 cites W1998204480 @default.
- W4384927417 cites W2004288989 @default.
- W4384927417 cites W2006039263 @default.
- W4384927417 cites W2056139024 @default.
- W4384927417 cites W2064607873 @default.
- W4384927417 cites W2131681506 @default.
- W4384927417 cites W2142961456 @default.
- W4384927417 cites W2287586640 @default.
- W4384927417 cites W2337688125 @default.
- W4384927417 cites W2583890970 @default.
- W4384927417 cites W2726111098 @default.
- W4384927417 cites W2736265420 @default.
- W4384927417 cites W2758942695 @default.
- W4384927417 cites W2769286440 @default.
- W4384927417 cites W2802310679 @default.
- W4384927417 cites W2811112136 @default.
- W4384927417 cites W2886614482 @default.
- W4384927417 cites W2893457521 @default.
- W4384927417 cites W2904318613 @default.
- W4384927417 cites W2906454690 @default.
- W4384927417 cites W2908425794 @default.
- W4384927417 cites W2910701250 @default.
- W4384927417 cites W2911110570 @default.
- W4384927417 cites W2911538911 @default.
- W4384927417 cites W2914806737 @default.
- W4384927417 cites W2921196390 @default.
- W4384927417 cites W2933895113 @default.
- W4384927417 cites W2943554161 @default.
- W4384927417 cites W2951466261 @default.
- W4384927417 cites W2951635356 @default.
- W4384927417 cites W2954288622 @default.
- W4384927417 cites W2962760173 @default.
- W4384927417 cites W2963026768 @default.
- W4384927417 cites W2968940548 @default.
- W4384927417 cites W2987530826 @default.
- W4384927417 cites W2998530579 @default.
- W4384927417 cites W3006436762 @default.
- W4384927417 cites W3006913750 @default.
- W4384927417 cites W3028394061 @default.
- W4384927417 cites W3038102341 @default.
- W4384927417 cites W3047940514 @default.
- W4384927417 cites W3094024077 @default.
- W4384927417 cites W3103928039 @default.
- W4384927417 cites W3106188259 @default.
- W4384927417 cites W3125272820 @default.
- W4384927417 cites W3126599133 @default.
- W4384927417 cites W3128307697 @default.
- W4384927417 cites W4241883936 @default.
- W4384927417 cites W4362694665 @default.
- W4384927417 doi "https://doi.org/10.32388/67kz7s" @default.
- W4384927417 hasPublicationYear "2023" @default.
- W4384927417 type Work @default.
- W4384927417 citedByCount "0" @default.
- W4384927417 crossrefType "posted-content" @default.
- W4384927417 hasAuthorship W4384927417A5024866294 @default.
- W4384927417 hasAuthorship W4384927417A5033269031 @default.
- W4384927417 hasAuthorship W4384927417A5043544976 @default.
- W4384927417 hasAuthorship W4384927417A5052754946 @default.
- W4384927417 hasAuthorship W4384927417A5062268779 @default.
- W4384927417 hasBestOaLocation W43849274171 @default.
- W4384927417 hasConcept C119857082 @default.
- W4384927417 hasConcept C124101348 @default.
- W4384927417 hasConcept C139502532 @default.
- W4384927417 hasConcept C142724271 @default.
- W4384927417 hasConcept C154945302 @default.
- W4384927417 hasConcept C2522767166 @default.
- W4384927417 hasConcept C2779134260 @default.
- W4384927417 hasConcept C2779159551 @default.
- W4384927417 hasConcept C41008148 @default.
- W4384927417 hasConcept C52146309 @default.
- W4384927417 hasConcept C534262118 @default.
- W4384927417 hasConcept C71924100 @default.
- W4384927417 hasConcept C75684735 @default.
- W4384927417 hasConcept C79158427 @default.
- W4384927417 hasConceptScore W4384927417C119857082 @default.
- W4384927417 hasConceptScore W4384927417C124101348 @default.
- W4384927417 hasConceptScore W4384927417C139502532 @default.
- W4384927417 hasConceptScore W4384927417C142724271 @default.
- W4384927417 hasConceptScore W4384927417C154945302 @default.
- W4384927417 hasConceptScore W4384927417C2522767166 @default.
- W4384927417 hasConceptScore W4384927417C2779134260 @default.
- W4384927417 hasConceptScore W4384927417C2779159551 @default.
- W4384927417 hasConceptScore W4384927417C41008148 @default.
- W4384927417 hasConceptScore W4384927417C52146309 @default.
- W4384927417 hasConceptScore W4384927417C534262118 @default.
- W4384927417 hasConceptScore W4384927417C71924100 @default.
- W4384927417 hasConceptScore W4384927417C75684735 @default.
- W4384927417 hasConceptScore W4384927417C79158427 @default.
- W4384927417 hasLocation W43849274171 @default.