Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384938749> ?p ?o ?g. }
- W4384938749 endingPage "122223" @default.
- W4384938749 startingPage "122223" @default.
- W4384938749 abstract "Ozone concentrations in Houston, Texas, are among the highest in the United States, posing significant risks to human health. This study aimed to evaluate the impact of various emissions sources and meteorological factors on ozone formation in Houston from 2017 to 2021 using a comprehensive PMF-SHAP approach. First, we distinguished the unique sources of VOCs in each area and identified differences in the local chemistry that affect ozone production. At the urban station, the primary sources were n_decane, biogenic/industrial/fuel evaporation, oil and gas flaring/production, industrial emissions/evaporation, and ethylene/propylene/aromatics. At the industrial site, the main sources were industrial emissions/evaporation, fuel evaporation, vehicle-related sources, oil and gas flaring/production, biogenic, aromatic, and ethylene and propylene. And then, we performed SHAP analysis to determine the importance and impact of each emissions factor and meteorological variables. Shortwave radiation (SHAP values are ∼5.74 and ∼6.3 for Milby Park and Lynchburg, respectively) and humidity (∼4.87 and ∼4.71, respectively) were the most important variables for both sites. For the urban station, the most important emissions sources were n_decane (∼2.96), industrial emissions/evaporation (∼1.89), and ethylene/propylene/aromatics (∼1.57), while for the industrial site, they were oil and gas flaring/production (∼1.38), ethylene/propylene (∼1.26), and industrial emissions/evaporation (∼0.95). NOx had a negative impact on ozone production at the urban station due to the NOx-rich chemical regime, whereas NOx had positive impacts at the industrial site. The study's findings suggest that the PMF-SHAP approach is efficient, inexpensive, and can be applied to other similar applications to identify factors contributing to ozone-exceedance events. The study's results can be used to develop more effective air quality management strategies for Houston and other cities with high levels of ozone." @default.
- W4384938749 created "2023-07-22" @default.
- W4384938749 creator A5012790271 @default.
- W4384938749 creator A5016326304 @default.
- W4384938749 creator A5017518380 @default.
- W4384938749 creator A5021096114 @default.
- W4384938749 creator A5026764121 @default.
- W4384938749 creator A5074401943 @default.
- W4384938749 date "2023-10-01" @default.
- W4384938749 modified "2023-09-27" @default.
- W4384938749 title "A comprehensive approach combining positive matrix factorization modeling, meteorology, and machine learning for source apportionment of surface ozone precursors: Underlying factors contributing to ozone formation in Houston, Texas" @default.
- W4384938749 cites W1986839272 @default.
- W4384938749 cites W2013544277 @default.
- W4384938749 cites W2021091250 @default.
- W4384938749 cites W2023852418 @default.
- W4384938749 cites W2043769713 @default.
- W4384938749 cites W2050411644 @default.
- W4384938749 cites W2059745395 @default.
- W4384938749 cites W2076081868 @default.
- W4384938749 cites W2083419589 @default.
- W4384938749 cites W2130083010 @default.
- W4384938749 cites W2136128263 @default.
- W4384938749 cites W2146061402 @default.
- W4384938749 cites W2172167168 @default.
- W4384938749 cites W2236341669 @default.
- W4384938749 cites W2271740825 @default.
- W4384938749 cites W2393477404 @default.
- W4384938749 cites W2606487782 @default.
- W4384938749 cites W2610193388 @default.
- W4384938749 cites W2752553290 @default.
- W4384938749 cites W2790099664 @default.
- W4384938749 cites W2800286624 @default.
- W4384938749 cites W2904424130 @default.
- W4384938749 cites W2911891827 @default.
- W4384938749 cites W2944505580 @default.
- W4384938749 cites W2953169424 @default.
- W4384938749 cites W2953978338 @default.
- W4384938749 cites W2957113552 @default.
- W4384938749 cites W2999615587 @default.
- W4384938749 cites W3000311269 @default.
- W4384938749 cites W3003402795 @default.
- W4384938749 cites W3003638512 @default.
- W4384938749 cites W3009596386 @default.
- W4384938749 cites W3036293085 @default.
- W4384938749 cites W3037226097 @default.
- W4384938749 cites W3041523126 @default.
- W4384938749 cites W3132972443 @default.
- W4384938749 cites W3162185432 @default.
- W4384938749 cites W3184742829 @default.
- W4384938749 cites W3185702739 @default.
- W4384938749 cites W3193792845 @default.
- W4384938749 cites W3209161350 @default.
- W4384938749 cites W4206734752 @default.
- W4384938749 cites W4210538803 @default.
- W4384938749 cites W4213043014 @default.
- W4384938749 cites W4220675858 @default.
- W4384938749 cites W4224067360 @default.
- W4384938749 cites W4245097271 @default.
- W4384938749 cites W4292640674 @default.
- W4384938749 cites W4295006236 @default.
- W4384938749 cites W4309632781 @default.
- W4384938749 cites W4315641624 @default.
- W4384938749 cites W4318065418 @default.
- W4384938749 cites W4322734209 @default.
- W4384938749 cites W4360873360 @default.
- W4384938749 doi "https://doi.org/10.1016/j.envpol.2023.122223" @default.
- W4384938749 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37481031" @default.
- W4384938749 hasPublicationYear "2023" @default.
- W4384938749 type Work @default.
- W4384938749 citedByCount "0" @default.
- W4384938749 crossrefType "journal-article" @default.
- W4384938749 hasAuthorship W4384938749A5012790271 @default.
- W4384938749 hasAuthorship W4384938749A5016326304 @default.
- W4384938749 hasAuthorship W4384938749A5017518380 @default.
- W4384938749 hasAuthorship W4384938749A5021096114 @default.
- W4384938749 hasAuthorship W4384938749A5026764121 @default.
- W4384938749 hasAuthorship W4384938749A5074401943 @default.
- W4384938749 hasConcept C105923489 @default.
- W4384938749 hasConcept C107872376 @default.
- W4384938749 hasConcept C126314574 @default.
- W4384938749 hasConcept C127313418 @default.
- W4384938749 hasConcept C153294291 @default.
- W4384938749 hasConcept C162324750 @default.
- W4384938749 hasConcept C165556158 @default.
- W4384938749 hasConcept C178790620 @default.
- W4384938749 hasConcept C185592680 @default.
- W4384938749 hasConcept C203032635 @default.
- W4384938749 hasConcept C205649164 @default.
- W4384938749 hasConcept C2776720842 @default.
- W4384938749 hasConcept C39432304 @default.
- W4384938749 hasConcept C508106653 @default.
- W4384938749 hasConcept C559116025 @default.
- W4384938749 hasConcept C61441594 @default.
- W4384938749 hasConcept C82753439 @default.
- W4384938749 hasConcept C87717796 @default.
- W4384938749 hasConcept C91586092 @default.
- W4384938749 hasConceptScore W4384938749C105923489 @default.
- W4384938749 hasConceptScore W4384938749C107872376 @default.