Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384938768> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4384938768 endingPage "102250" @default.
- W4384938768 startingPage "102250" @default.
- W4384938768 abstract "Mixed trigonometric-polynomials (MTPs) are functions of the form f(x,sinx,cosx) where f is a trivariate polynomial with rational coefficients, and the argument x ranges over the reals. In this paper, an algorithm “isolating” all the real roots of an MTP is provided and implemented. It automatically divides the real roots into two parts: one consists of finitely many roots in an interval [μ−,μ+] while the other consists of countably many roots in R﹨[μ−,μ+]. For the roots in [μ−,μ+], the algorithm returns isolating intervals and corresponding multiplicities while for those greater than μ+, it returns finitely many mutually disjoint small intervals Ii⊂[−π,π], integers ci>0 and multisets of root multiplicity {mj,i}j=1ci such that any root >μ+ is in the set (∪i∪k∈N(Ii+2kπ)) and any interval Ii+2kπ⊂(μ+,∞) contains exactly ci distinct roots with multiplicities m1,i,...,mci,i, respectively. The efficiency of the algorithm is shown by experiments. The method used to isolate the roots in [μ−,μ+] is applicable to any other bounded interval as well. The algorithm takes advantages of the weak Fourier sequence technique and deals with the intervals period-by-period without scaling the coordinate so to keep the length of the sequence short. The new approaches can easily be modified to decide whether there is any root, or whether there are infinitely many roots in unbounded intervals of the form (−∞,a) or (a,∞) with a∈Q." @default.
- W4384938768 created "2023-07-22" @default.
- W4384938768 creator A5003473978 @default.
- W4384938768 creator A5023369582 @default.
- W4384938768 creator A5051027971 @default.
- W4384938768 creator A5065639971 @default.
- W4384938768 creator A5084510181 @default.
- W4384938768 date "2024-03-01" @default.
- W4384938768 modified "2023-10-14" @default.
- W4384938768 title "Isolating all the real roots of a mixed trigonometric-polynomial" @default.
- W4384938768 cites W1972600569 @default.
- W4384938768 cites W2008288068 @default.
- W4384938768 cites W2015314684 @default.
- W4384938768 cites W2036444172 @default.
- W4384938768 cites W2054225417 @default.
- W4384938768 cites W2102283069 @default.
- W4384938768 cites W2334738280 @default.
- W4384938768 cites W2572002477 @default.
- W4384938768 cites W2735589526 @default.
- W4384938768 cites W2759407097 @default.
- W4384938768 cites W2980058062 @default.
- W4384938768 cites W3123407047 @default.
- W4384938768 doi "https://doi.org/10.1016/j.jsc.2023.102250" @default.
- W4384938768 hasPublicationYear "2024" @default.
- W4384938768 type Work @default.
- W4384938768 citedByCount "1" @default.
- W4384938768 countsByYear W43849387682023 @default.
- W4384938768 crossrefType "journal-article" @default.
- W4384938768 hasAuthorship W4384938768A5003473978 @default.
- W4384938768 hasAuthorship W4384938768A5023369582 @default.
- W4384938768 hasAuthorship W4384938768A5051027971 @default.
- W4384938768 hasAuthorship W4384938768A5065639971 @default.
- W4384938768 hasAuthorship W4384938768A5084510181 @default.
- W4384938768 hasConcept C11413529 @default.
- W4384938768 hasConcept C114614502 @default.
- W4384938768 hasConcept C118615104 @default.
- W4384938768 hasConcept C134306372 @default.
- W4384938768 hasConcept C138885662 @default.
- W4384938768 hasConcept C156004811 @default.
- W4384938768 hasConcept C171078966 @default.
- W4384938768 hasConcept C178009071 @default.
- W4384938768 hasConcept C2524010 @default.
- W4384938768 hasConcept C2778067643 @default.
- W4384938768 hasConcept C2778112365 @default.
- W4384938768 hasConcept C33923547 @default.
- W4384938768 hasConcept C34388435 @default.
- W4384938768 hasConcept C41895202 @default.
- W4384938768 hasConcept C45340560 @default.
- W4384938768 hasConcept C54355233 @default.
- W4384938768 hasConcept C86803240 @default.
- W4384938768 hasConcept C90119067 @default.
- W4384938768 hasConceptScore W4384938768C11413529 @default.
- W4384938768 hasConceptScore W4384938768C114614502 @default.
- W4384938768 hasConceptScore W4384938768C118615104 @default.
- W4384938768 hasConceptScore W4384938768C134306372 @default.
- W4384938768 hasConceptScore W4384938768C138885662 @default.
- W4384938768 hasConceptScore W4384938768C156004811 @default.
- W4384938768 hasConceptScore W4384938768C171078966 @default.
- W4384938768 hasConceptScore W4384938768C178009071 @default.
- W4384938768 hasConceptScore W4384938768C2524010 @default.
- W4384938768 hasConceptScore W4384938768C2778067643 @default.
- W4384938768 hasConceptScore W4384938768C2778112365 @default.
- W4384938768 hasConceptScore W4384938768C33923547 @default.
- W4384938768 hasConceptScore W4384938768C34388435 @default.
- W4384938768 hasConceptScore W4384938768C41895202 @default.
- W4384938768 hasConceptScore W4384938768C45340560 @default.
- W4384938768 hasConceptScore W4384938768C54355233 @default.
- W4384938768 hasConceptScore W4384938768C86803240 @default.
- W4384938768 hasConceptScore W4384938768C90119067 @default.
- W4384938768 hasLocation W43849387681 @default.
- W4384938768 hasOpenAccess W4384938768 @default.
- W4384938768 hasPrimaryLocation W43849387681 @default.
- W4384938768 hasRelatedWork W1506240662 @default.
- W4384938768 hasRelatedWork W1969466213 @default.
- W4384938768 hasRelatedWork W1977563107 @default.
- W4384938768 hasRelatedWork W2046443115 @default.
- W4384938768 hasRelatedWork W2152478214 @default.
- W4384938768 hasRelatedWork W2605125467 @default.
- W4384938768 hasRelatedWork W2963699585 @default.
- W4384938768 hasRelatedWork W2963721618 @default.
- W4384938768 hasRelatedWork W4302606076 @default.
- W4384938768 hasRelatedWork W4386916508 @default.
- W4384938768 hasVolume "121" @default.
- W4384938768 isParatext "false" @default.
- W4384938768 isRetracted "false" @default.
- W4384938768 workType "article" @default.