Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384942549> ?p ?o ?g. }
- W4384942549 endingPage "4632" @default.
- W4384942549 startingPage "4623" @default.
- W4384942549 abstract "The prediction of enzyme activity is one of the main challenges in catalysis. With computer-aided methods, it is possible to simulate the reaction mechanism at the atomic level. However, these methods are usually expensive if they are to be used on a large scale, as they are needed for protein engineering campaigns. To alleviate this situation, machine learning methods can help in the generation of predictive-decision models. Herein, we test different regression algorithms for the prediction of the reaction energy barrier of the rate-limiting step of the hydrolysis of mono-(2-hydroxyethyl)terephthalic acid by the MHETase ofIdeonella sakaiensis. As a training data set, we use steered quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation snapshots and their corresponding pulling work values. We have explored three algorithms together with three chemical representations. As an outcome, our trained models are able to predict pulling works along the steered QM/MM MD simulations with a mean absolute error below 3 kcal mol-1 and a score value above 0.90. More challenging is the prediction of the energy maximum with a single geometry. Whereas the use of the initial snapshot of the QM/MM MD trajectory as input geometry yields a very poor prediction of the reaction energy barrier, the use of an intermediate snapshot of the former trajectory brings the score value above 0.40 with a low mean absolute error (ca. 3 kcal mol-1). Altogether, we have faced in this work some initial challenges of the final goal of getting an efficient workflow for the semiautomatic prediction of enzyme-catalyzed energy barriers and catalytic efficiencies." @default.
- W4384942549 created "2023-07-22" @default.
- W4384942549 creator A5004994889 @default.
- W4384942549 creator A5011992388 @default.
- W4384942549 creator A5024654230 @default.
- W4384942549 creator A5066158393 @default.
- W4384942549 creator A5090922449 @default.
- W4384942549 date "2023-07-21" @default.
- W4384942549 modified "2023-10-14" @default.
- W4384942549 title "Prediction of Enzyme Catalysis by Computing Reaction Energy Barriers via Steered QM/MM Molecular Dynamics Simulations and Machine Learning" @default.
- W4384942549 cites W1563088657 @default.
- W4384942549 cites W1584846110 @default.
- W4384942549 cites W174064755 @default.
- W4384942549 cites W178840922 @default.
- W4384942549 cites W1968166922 @default.
- W4384942549 cites W1975997599 @default.
- W4384942549 cites W1976499671 @default.
- W4384942549 cites W1993177346 @default.
- W4384942549 cites W2023271753 @default.
- W4384942549 cites W2029413789 @default.
- W4384942549 cites W2034078233 @default.
- W4384942549 cites W2035687084 @default.
- W4384942549 cites W2038533471 @default.
- W4384942549 cites W2054103452 @default.
- W4384942549 cites W2054172648 @default.
- W4384942549 cites W2077933693 @default.
- W4384942549 cites W2086786922 @default.
- W4384942549 cites W2096921126 @default.
- W4384942549 cites W2104489082 @default.
- W4384942549 cites W2122825543 @default.
- W4384942549 cites W2138820253 @default.
- W4384942549 cites W2143981217 @default.
- W4384942549 cites W2148284063 @default.
- W4384942549 cites W2148541186 @default.
- W4384942549 cites W2149655632 @default.
- W4384942549 cites W2163961191 @default.
- W4384942549 cites W2164748882 @default.
- W4384942549 cites W2167096693 @default.
- W4384942549 cites W2168240189 @default.
- W4384942549 cites W2332712348 @default.
- W4384942549 cites W2473135273 @default.
- W4384942549 cites W2551031656 @default.
- W4384942549 cites W2606882994 @default.
- W4384942549 cites W2613905013 @default.
- W4384942549 cites W2623250387 @default.
- W4384942549 cites W2751743037 @default.
- W4384942549 cites W2766958291 @default.
- W4384942549 cites W2782655885 @default.
- W4384942549 cites W2791910111 @default.
- W4384942549 cites W2804040157 @default.
- W4384942549 cites W2893054519 @default.
- W4384942549 cites W2894733400 @default.
- W4384942549 cites W2912446381 @default.
- W4384942549 cites W2935008047 @default.
- W4384942549 cites W2937126532 @default.
- W4384942549 cites W2944785462 @default.
- W4384942549 cites W2965982195 @default.
- W4384942549 cites W2976720228 @default.
- W4384942549 cites W2989052455 @default.
- W4384942549 cites W2990985445 @default.
- W4384942549 cites W2995106228 @default.
- W4384942549 cites W2997718717 @default.
- W4384942549 cites W3006069876 @default.
- W4384942549 cites W3008777351 @default.
- W4384942549 cites W3012078071 @default.
- W4384942549 cites W3089916935 @default.
- W4384942549 cites W3125740362 @default.
- W4384942549 cites W3132956480 @default.
- W4384942549 cites W3165300194 @default.
- W4384942549 cites W3183931249 @default.
- W4384942549 cites W3189785920 @default.
- W4384942549 cites W4205328756 @default.
- W4384942549 cites W4224988655 @default.
- W4384942549 cites W4280585118 @default.
- W4384942549 cites W4283032119 @default.
- W4384942549 doi "https://doi.org/10.1021/acs.jcim.3c00772" @default.
- W4384942549 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37479222" @default.
- W4384942549 hasPublicationYear "2023" @default.
- W4384942549 type Work @default.
- W4384942549 citedByCount "1" @default.
- W4384942549 countsByYear W43849425492023 @default.
- W4384942549 crossrefType "journal-article" @default.
- W4384942549 hasAuthorship W4384942549A5004994889 @default.
- W4384942549 hasAuthorship W4384942549A5011992388 @default.
- W4384942549 hasAuthorship W4384942549A5024654230 @default.
- W4384942549 hasAuthorship W4384942549A5066158393 @default.
- W4384942549 hasAuthorship W4384942549A5090922449 @default.
- W4384942549 hasConcept C105795698 @default.
- W4384942549 hasConcept C119857082 @default.
- W4384942549 hasConcept C127413603 @default.
- W4384942549 hasConcept C139945424 @default.
- W4384942549 hasConcept C147597530 @default.
- W4384942549 hasConcept C154945302 @default.
- W4384942549 hasConcept C167085575 @default.
- W4384942549 hasConcept C185592680 @default.
- W4384942549 hasConcept C188154048 @default.
- W4384942549 hasConcept C188198153 @default.
- W4384942549 hasConcept C20803032 @default.