Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384945770> ?p ?o ?g. }
- W4384945770 endingPage "549" @default.
- W4384945770 startingPage "542" @default.
- W4384945770 abstract "Artificial Intelligence (AI) is a rapidly emerging technology in healthcare that has the potential to revolutionise clinical nutrition. AI can assist in analysing complex data, interpreting medical images, and providing personalised nutrition interventions for patients. Clinical nutrition is a critical aspect of patient care, and AI can help clinicians make more informed decisions regarding patients' nutritional requirements, disease prevention, and management. AI algorithms can analyse large datasets to identify novel associations between diet and disease outcomes, enabling clinicians to make evidence-based nutritional recommendations. AI-powered devices and applications can also assist in tracking dietary intake, providing feedback, and motivating patients towards healthier food choices. However, the adoption of AI in clinical nutrition raises several ethical and regulatory concerns, such as data privacy and bias. Further research is needed to assess the clinical effectiveness and safety of AI-powered nutrition interventions. In conclusion, AI has the potential to transform clinical nutrition, but its integration into clinical practice should be carefully monitored to ensure patient safety and benefit. This article discusses the current and future applications of AI in clinical nutrition and highlights its potential benefits." @default.
- W4384945770 created "2023-07-22" @default.
- W4384945770 creator A5019385967 @default.
- W4384945770 creator A5060299661 @default.
- W4384945770 creator A5071237373 @default.
- W4384945770 date "2023-10-01" @default.
- W4384945770 modified "2023-10-17" @default.
- W4384945770 title "Artificial intelligence & clinical nutrition: What the future might have in store" @default.
- W4384945770 cites W2055741845 @default.
- W4384945770 cites W2138378318 @default.
- W4384945770 cites W2144165269 @default.
- W4384945770 cites W2409650203 @default.
- W4384945770 cites W2579442275 @default.
- W4384945770 cites W2580313822 @default.
- W4384945770 cites W2592742128 @default.
- W4384945770 cites W2765106267 @default.
- W4384945770 cites W2772723798 @default.
- W4384945770 cites W2808365741 @default.
- W4384945770 cites W2891346890 @default.
- W4384945770 cites W2905607758 @default.
- W4384945770 cites W2906926699 @default.
- W4384945770 cites W2924963068 @default.
- W4384945770 cites W2932047266 @default.
- W4384945770 cites W2944591725 @default.
- W4384945770 cites W2946665012 @default.
- W4384945770 cites W2947499078 @default.
- W4384945770 cites W2951091426 @default.
- W4384945770 cites W2990464492 @default.
- W4384945770 cites W2994437366 @default.
- W4384945770 cites W3003805058 @default.
- W4384945770 cites W3014493065 @default.
- W4384945770 cites W3043921266 @default.
- W4384945770 cites W3093469073 @default.
- W4384945770 cites W3094316170 @default.
- W4384945770 cites W3094492244 @default.
- W4384945770 cites W3113237873 @default.
- W4384945770 cites W3117865842 @default.
- W4384945770 cites W3124926562 @default.
- W4384945770 cites W3127423096 @default.
- W4384945770 cites W3133891921 @default.
- W4384945770 cites W3134685394 @default.
- W4384945770 cites W3145026862 @default.
- W4384945770 cites W3175591976 @default.
- W4384945770 cites W3199667784 @default.
- W4384945770 cites W3200742808 @default.
- W4384945770 cites W3204013916 @default.
- W4384945770 cites W4200131949 @default.
- W4384945770 cites W4200200462 @default.
- W4384945770 cites W4200511449 @default.
- W4384945770 cites W4212875169 @default.
- W4384945770 cites W4220702035 @default.
- W4384945770 cites W4226282924 @default.
- W4384945770 cites W4280550187 @default.
- W4384945770 cites W4283034201 @default.
- W4384945770 cites W4283645527 @default.
- W4384945770 cites W4287148280 @default.
- W4384945770 cites W4293458356 @default.
- W4384945770 cites W4304761908 @default.
- W4384945770 cites W4309657883 @default.
- W4384945770 cites W4309742263 @default.
- W4384945770 cites W4318754628 @default.
- W4384945770 cites W4318981189 @default.
- W4384945770 cites W4320495332 @default.
- W4384945770 cites W4320919935 @default.
- W4384945770 cites W4323358563 @default.
- W4384945770 cites W4361282521 @default.
- W4384945770 cites W4361288799 @default.
- W4384945770 cites W4362458093 @default.
- W4384945770 cites W4362495605 @default.
- W4384945770 cites W4362506970 @default.
- W4384945770 cites W4365516068 @default.
- W4384945770 doi "https://doi.org/10.1016/j.clnesp.2023.07.082" @default.
- W4384945770 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37739704" @default.
- W4384945770 hasPublicationYear "2023" @default.
- W4384945770 type Work @default.
- W4384945770 citedByCount "0" @default.
- W4384945770 crossrefType "journal-article" @default.
- W4384945770 hasAuthorship W4384945770A5019385967 @default.
- W4384945770 hasAuthorship W4384945770A5060299661 @default.
- W4384945770 hasAuthorship W4384945770A5071237373 @default.
- W4384945770 hasConcept C112930515 @default.
- W4384945770 hasConcept C142724271 @default.
- W4384945770 hasConcept C159110408 @default.
- W4384945770 hasConcept C160735492 @default.
- W4384945770 hasConcept C162324750 @default.
- W4384945770 hasConcept C177713679 @default.
- W4384945770 hasConcept C27415008 @default.
- W4384945770 hasConcept C2779134260 @default.
- W4384945770 hasConcept C2779974597 @default.
- W4384945770 hasConcept C50522688 @default.
- W4384945770 hasConcept C71924100 @default.
- W4384945770 hasConcept C75141282 @default.
- W4384945770 hasConceptScore W4384945770C112930515 @default.
- W4384945770 hasConceptScore W4384945770C142724271 @default.
- W4384945770 hasConceptScore W4384945770C159110408 @default.
- W4384945770 hasConceptScore W4384945770C160735492 @default.
- W4384945770 hasConceptScore W4384945770C162324750 @default.
- W4384945770 hasConceptScore W4384945770C177713679 @default.