Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384948900> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4384948900 abstract "Machine learning-based computational health care systems using medical images have undergone rapid advancement in clinical disease diagnosis support. It is very crucial to identify the most common form of dementia, which is Alzheimer's Disease (AD), that progress from a pre-clinical stage called Mild Cognitive Impairment (MCI). This work focuses on the classifications of different progression stages of cognitive impairment to Alzheimer's Disease (AD), using 2D T1 weighted axial MRI images. The images obtained from the ADNI database correspond to various stages of cognitive impairment like Cognitive Normal (CN), Mild Cognitive Impairment (MCI), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer's Disease (AD) with 3000 samples of each class. As the focus of the work is to identify the different development stages of cognitive impairment which progress to AD, it proposes a CNN-based two-class classification network for AD/MCI, AD/CN, and MCI/CN and a five-stage CNN classifier for classifying AD vs CN vs EMCI vs LMCI vs MCI stages, the result thus obtained is compared with transfer learning-based model, the Xception architecture, by performing the binary and five class classification tasks with the same dataset. The proposed CNN-based model gives an accuracy of 93.28% for AD/MCI, 91.92% for AD/CN, and 91.90% for MCI/CN, the overall accuracy of the five class classification using the CNN-based model is 93%. The Transfer learning-based work produced an accuracy of 91.33% for AD/MCI, 88.83% for AD/CN, and 86.9% for MCI/CN, 93.89% for five class classifications. The work also evaluates the class-wise performance of the five class classification tasks with both models to analyze the effectiveness of each class in the classification of cognitive impairment progression stages. The results show that both models classify all five progression stages with good accuracy and high specificity, which assures lesser false positive classification." @default.
- W4384948900 created "2023-07-22" @default.
- W4384948900 creator A5008903641 @default.
- W4384948900 creator A5018544934 @default.
- W4384948900 creator A5092512515 @default.
- W4384948900 date "2023-04-28" @default.
- W4384948900 modified "2023-10-14" @default.
- W4384948900 title "Deep Learning Enabled Classification of Cognitive Impairment Stages Using MRI Images" @default.
- W4384948900 cites W1849277567 @default.
- W4384948900 cites W1963568158 @default.
- W4384948900 cites W2043020182 @default.
- W4384948900 cites W2057536936 @default.
- W4384948900 cites W2531409750 @default.
- W4384948900 cites W2783694832 @default.
- W4384948900 cites W2784075654 @default.
- W4384948900 cites W2789337348 @default.
- W4384948900 cites W2894323222 @default.
- W4384948900 cites W2900256713 @default.
- W4384948900 cites W3004621388 @default.
- W4384948900 cites W3005273529 @default.
- W4384948900 cites W3012533456 @default.
- W4384948900 cites W3017328779 @default.
- W4384948900 cites W3072296037 @default.
- W4384948900 cites W3113100858 @default.
- W4384948900 cites W3133909080 @default.
- W4384948900 cites W3134726279 @default.
- W4384948900 cites W3208463329 @default.
- W4384948900 cites W4211260092 @default.
- W4384948900 cites W4321600817 @default.
- W4384948900 doi "https://doi.org/10.1109/cises58720.2023.10183447" @default.
- W4384948900 hasPublicationYear "2023" @default.
- W4384948900 type Work @default.
- W4384948900 citedByCount "0" @default.
- W4384948900 crossrefType "proceedings-article" @default.
- W4384948900 hasAuthorship W4384948900A5008903641 @default.
- W4384948900 hasAuthorship W4384948900A5018544934 @default.
- W4384948900 hasAuthorship W4384948900A5092512515 @default.
- W4384948900 hasConcept C142724271 @default.
- W4384948900 hasConcept C150899416 @default.
- W4384948900 hasConcept C153180895 @default.
- W4384948900 hasConcept C154945302 @default.
- W4384948900 hasConcept C15744967 @default.
- W4384948900 hasConcept C169760540 @default.
- W4384948900 hasConcept C169900460 @default.
- W4384948900 hasConcept C2779134260 @default.
- W4384948900 hasConcept C2779483572 @default.
- W4384948900 hasConcept C2984915365 @default.
- W4384948900 hasConcept C41008148 @default.
- W4384948900 hasConcept C502032728 @default.
- W4384948900 hasConcept C71924100 @default.
- W4384948900 hasConcept C95623464 @default.
- W4384948900 hasConceptScore W4384948900C142724271 @default.
- W4384948900 hasConceptScore W4384948900C150899416 @default.
- W4384948900 hasConceptScore W4384948900C153180895 @default.
- W4384948900 hasConceptScore W4384948900C154945302 @default.
- W4384948900 hasConceptScore W4384948900C15744967 @default.
- W4384948900 hasConceptScore W4384948900C169760540 @default.
- W4384948900 hasConceptScore W4384948900C169900460 @default.
- W4384948900 hasConceptScore W4384948900C2779134260 @default.
- W4384948900 hasConceptScore W4384948900C2779483572 @default.
- W4384948900 hasConceptScore W4384948900C2984915365 @default.
- W4384948900 hasConceptScore W4384948900C41008148 @default.
- W4384948900 hasConceptScore W4384948900C502032728 @default.
- W4384948900 hasConceptScore W4384948900C71924100 @default.
- W4384948900 hasConceptScore W4384948900C95623464 @default.
- W4384948900 hasLocation W43849489001 @default.
- W4384948900 hasOpenAccess W4384948900 @default.
- W4384948900 hasPrimaryLocation W43849489001 @default.
- W4384948900 hasRelatedWork W1904513774 @default.
- W4384948900 hasRelatedWork W2001652754 @default.
- W4384948900 hasRelatedWork W2272745645 @default.
- W4384948900 hasRelatedWork W2533552281 @default.
- W4384948900 hasRelatedWork W2549006548 @default.
- W4384948900 hasRelatedWork W2563096758 @default.
- W4384948900 hasRelatedWork W2757957113 @default.
- W4384948900 hasRelatedWork W2921036759 @default.
- W4384948900 hasRelatedWork W4317486055 @default.
- W4384948900 hasRelatedWork W3158004940 @default.
- W4384948900 isParatext "false" @default.
- W4384948900 isRetracted "false" @default.
- W4384948900 workType "article" @default.