Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384992829> ?p ?o ?g. }
- W4384992829 endingPage "252" @default.
- W4384992829 startingPage "241" @default.
- W4384992829 abstract "Despite their well-established efficiency and accuracy, fractional-step schemes are not commonly used in finite volume methods. This article presents first-, second-, and third-order in-time fractional step schemes to solve incompressible convective time-dependent flows using collocated meshes. The fractional step methods are designed from a fully discrete problem and allow for optimal convergence rates. A detailed algebraic derivation of the method is included, incorporating implementation details to easily adapt existing finite volume codes. The schemes use extrapolations for pressure in the first calculation step and include Yosida's approximation in the last step to ensure third-order in-time accuracy. In addition, an incomplete Yosida scheme that considers a correction only in the diffusive term is evaluated. Time discretization is achieved using the backward differentiation formula, including first-, second-, and third-order in-time schemes, and an optimized second-order one. The linear momentum and continuity equations are decoupled using a pressure-correction strategy. The numerical results include a converged test using the solutions to evaluate the convergence in-time rates. Finally, the dominant convective flows related to the lid-driven cavity problem are solved for two- and three-dimensional flows. The use of Picard, Newton, and Picard–Newton linearization is analyzed. The optimal rates of the convergence errors of the fractional-step methods are verified. The results indicate that Yosida's methods are more accurate than the projection method for the same meshes and time-step sizes. The use of Newton and Picard–Newton linearization strategies considerably reduces the number of iterations compared with the Picard scheme. The optimized second-order method is more accurate than the classical one and is comparable to the third-order method in the solution of dominant convective flows. The benefits of using high-order time integration schemes are verified." @default.
- W4384992829 created "2023-07-22" @default.
- W4384992829 creator A5011462915 @default.
- W4384992829 creator A5047120678 @default.
- W4384992829 creator A5067591292 @default.
- W4384992829 creator A5078544374 @default.
- W4384992829 date "2023-09-01" @default.
- W4384992829 modified "2023-09-26" @default.
- W4384992829 title "Non-relaxed finite volume fractional step schemes for unsteady incompressible flows" @default.
- W4384992829 cites W1871259628 @default.
- W4384992829 cites W1964070472 @default.
- W4384992829 cites W1969483955 @default.
- W4384992829 cites W1979217793 @default.
- W4384992829 cites W1988754720 @default.
- W4384992829 cites W1989152456 @default.
- W4384992829 cites W1990134738 @default.
- W4384992829 cites W2008581069 @default.
- W4384992829 cites W2019113499 @default.
- W4384992829 cites W2019487448 @default.
- W4384992829 cites W2021041911 @default.
- W4384992829 cites W2023272829 @default.
- W4384992829 cites W2030703553 @default.
- W4384992829 cites W2034434606 @default.
- W4384992829 cites W2034525907 @default.
- W4384992829 cites W2035545087 @default.
- W4384992829 cites W2038010996 @default.
- W4384992829 cites W2042789858 @default.
- W4384992829 cites W2042997072 @default.
- W4384992829 cites W2046231848 @default.
- W4384992829 cites W2052487661 @default.
- W4384992829 cites W2062016636 @default.
- W4384992829 cites W2070528777 @default.
- W4384992829 cites W2076077791 @default.
- W4384992829 cites W2081388881 @default.
- W4384992829 cites W2090003019 @default.
- W4384992829 cites W2092771181 @default.
- W4384992829 cites W2096130365 @default.
- W4384992829 cites W2118217932 @default.
- W4384992829 cites W2118922968 @default.
- W4384992829 cites W2121788117 @default.
- W4384992829 cites W2123516615 @default.
- W4384992829 cites W2135679465 @default.
- W4384992829 cites W2141870784 @default.
- W4384992829 cites W2145107531 @default.
- W4384992829 cites W2152769223 @default.
- W4384992829 cites W2155216327 @default.
- W4384992829 cites W2156790936 @default.
- W4384992829 cites W2156946226 @default.
- W4384992829 cites W2162325570 @default.
- W4384992829 cites W2166614820 @default.
- W4384992829 cites W2168575889 @default.
- W4384992829 cites W2171763495 @default.
- W4384992829 cites W2256812163 @default.
- W4384992829 cites W2533529223 @default.
- W4384992829 cites W2793122091 @default.
- W4384992829 cites W2904697410 @default.
- W4384992829 cites W2963702331 @default.
- W4384992829 cites W2976612600 @default.
- W4384992829 cites W2984895481 @default.
- W4384992829 cites W3040947859 @default.
- W4384992829 cites W3047512026 @default.
- W4384992829 cites W3162749460 @default.
- W4384992829 cites W3192753386 @default.
- W4384992829 cites W3197989148 @default.
- W4384992829 cites W3210578275 @default.
- W4384992829 cites W3210792128 @default.
- W4384992829 cites W4281789732 @default.
- W4384992829 cites W4313574137 @default.
- W4384992829 doi "https://doi.org/10.1016/j.camwa.2023.07.002" @default.
- W4384992829 hasPublicationYear "2023" @default.
- W4384992829 type Work @default.
- W4384992829 citedByCount "0" @default.
- W4384992829 crossrefType "journal-article" @default.
- W4384992829 hasAuthorship W4384992829A5011462915 @default.
- W4384992829 hasAuthorship W4384992829A5047120678 @default.
- W4384992829 hasAuthorship W4384992829A5067591292 @default.
- W4384992829 hasAuthorship W4384992829A5078544374 @default.
- W4384992829 hasConcept C11210021 @default.
- W4384992829 hasConcept C11413529 @default.
- W4384992829 hasConcept C121332964 @default.
- W4384992829 hasConcept C126255220 @default.
- W4384992829 hasConcept C127162648 @default.
- W4384992829 hasConcept C127413603 @default.
- W4384992829 hasConcept C134306372 @default.
- W4384992829 hasConcept C146978453 @default.
- W4384992829 hasConcept C158622935 @default.
- W4384992829 hasConcept C162324750 @default.
- W4384992829 hasConcept C2524010 @default.
- W4384992829 hasConcept C2777303404 @default.
- W4384992829 hasConcept C28826006 @default.
- W4384992829 hasConcept C31258907 @default.
- W4384992829 hasConcept C31487907 @default.
- W4384992829 hasConcept C33923547 @default.
- W4384992829 hasConcept C41008148 @default.
- W4384992829 hasConcept C50478463 @default.
- W4384992829 hasConcept C50522688 @default.
- W4384992829 hasConcept C57493831 @default.
- W4384992829 hasConcept C57869625 @default.