Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384993192> ?p ?o ?g. }
- W4384993192 endingPage "108076" @default.
- W4384993192 startingPage "108076" @default.
- W4384993192 abstract "Nitrogen fertilization has a crucial role in sugar beet production, especially concerning root yield and quality. This study employed a machine learning approach to predict root yield and quality parameters based on the nutrient status of sugar beet leaves in relation to nitrogen fertilization. The field experiment included the following N fertilization treatments for sugar beet production: control (N0), presowing (N1 = 45 kg N ha−1) and presowing with top-dressing (N2 = 99 and 154.5 kg ha−1). Leaf samples were collected during the vegetation period in six intervals (May-Sept) to determine the levels of N, K and Na in the leaf dry matter. The machine learning regression based on ensemble decision trees and artificial neural network was used to determine the relationship of leaf samples based on varying N fertilization with yield parameters. Among the leaf elements analyzed, Na exhibited the highest average relative variable importance for root yield, sucrose content, and other quality parameters during the season with greater precipitation. In the season with less precipitation, N content at the beginning of July showed higher importance on root yield (74.6). The evaluated machine learning methods consistently achieved high accuracy across various combinations of input data and yield parameters, with a median R2 of 0.927 and a range from 0.842 to 0.998." @default.
- W4384993192 created "2023-07-22" @default.
- W4384993192 creator A5017438168 @default.
- W4384993192 creator A5039269203 @default.
- W4384993192 creator A5057764561 @default.
- W4384993192 creator A5065812025 @default.
- W4384993192 creator A5091849123 @default.
- W4384993192 date "2023-09-01" @default.
- W4384993192 modified "2023-09-24" @default.
- W4384993192 title "Prediction of sugar beet yield and quality parameters with varying nitrogen fertilization using ensemble decision trees and artificial neural networks" @default.
- W4384993192 cites W2004346821 @default.
- W4384993192 cites W2007312283 @default.
- W4384993192 cites W2090625207 @default.
- W4384993192 cites W2126107005 @default.
- W4384993192 cites W2220625760 @default.
- W4384993192 cites W2529670104 @default.
- W4384993192 cites W2742109465 @default.
- W4384993192 cites W2752605280 @default.
- W4384993192 cites W2792216026 @default.
- W4384993192 cites W2805142011 @default.
- W4384993192 cites W2898543370 @default.
- W4384993192 cites W2948363198 @default.
- W4384993192 cites W3006757100 @default.
- W4384993192 cites W3007651920 @default.
- W4384993192 cites W3032718886 @default.
- W4384993192 cites W3037094799 @default.
- W4384993192 cites W3097939264 @default.
- W4384993192 cites W3129247730 @default.
- W4384993192 cites W3159419921 @default.
- W4384993192 cites W3176839900 @default.
- W4384993192 cites W3198669003 @default.
- W4384993192 cites W359306102 @default.
- W4384993192 cites W4200256171 @default.
- W4384993192 cites W4220721522 @default.
- W4384993192 cites W4223917777 @default.
- W4384993192 cites W4229369218 @default.
- W4384993192 cites W4283029589 @default.
- W4384993192 cites W4283642492 @default.
- W4384993192 cites W4287878551 @default.
- W4384993192 cites W4289260947 @default.
- W4384993192 cites W4293086963 @default.
- W4384993192 cites W4296312141 @default.
- W4384993192 cites W4302363136 @default.
- W4384993192 cites W4309715461 @default.
- W4384993192 cites W4321123713 @default.
- W4384993192 cites W4360605008 @default.
- W4384993192 doi "https://doi.org/10.1016/j.compag.2023.108076" @default.
- W4384993192 hasPublicationYear "2023" @default.
- W4384993192 type Work @default.
- W4384993192 citedByCount "0" @default.
- W4384993192 crossrefType "journal-article" @default.
- W4384993192 hasAuthorship W4384993192A5017438168 @default.
- W4384993192 hasAuthorship W4384993192A5039269203 @default.
- W4384993192 hasAuthorship W4384993192A5057764561 @default.
- W4384993192 hasAuthorship W4384993192A5065812025 @default.
- W4384993192 hasAuthorship W4384993192A5091849123 @default.
- W4384993192 hasConcept C119857082 @default.
- W4384993192 hasConcept C134121241 @default.
- W4384993192 hasConcept C137660486 @default.
- W4384993192 hasConcept C185592680 @default.
- W4384993192 hasConcept C191897082 @default.
- W4384993192 hasConcept C192562407 @default.
- W4384993192 hasConcept C2776936025 @default.
- W4384993192 hasConcept C2777108408 @default.
- W4384993192 hasConcept C2780138947 @default.
- W4384993192 hasConcept C33923547 @default.
- W4384993192 hasConcept C41008148 @default.
- W4384993192 hasConcept C55493867 @default.
- W4384993192 hasConcept C6557445 @default.
- W4384993192 hasConcept C86803240 @default.
- W4384993192 hasConcept C88972607 @default.
- W4384993192 hasConceptScore W4384993192C119857082 @default.
- W4384993192 hasConceptScore W4384993192C134121241 @default.
- W4384993192 hasConceptScore W4384993192C137660486 @default.
- W4384993192 hasConceptScore W4384993192C185592680 @default.
- W4384993192 hasConceptScore W4384993192C191897082 @default.
- W4384993192 hasConceptScore W4384993192C192562407 @default.
- W4384993192 hasConceptScore W4384993192C2776936025 @default.
- W4384993192 hasConceptScore W4384993192C2777108408 @default.
- W4384993192 hasConceptScore W4384993192C2780138947 @default.
- W4384993192 hasConceptScore W4384993192C33923547 @default.
- W4384993192 hasConceptScore W4384993192C41008148 @default.
- W4384993192 hasConceptScore W4384993192C55493867 @default.
- W4384993192 hasConceptScore W4384993192C6557445 @default.
- W4384993192 hasConceptScore W4384993192C86803240 @default.
- W4384993192 hasConceptScore W4384993192C88972607 @default.
- W4384993192 hasLocation W43849931921 @default.
- W4384993192 hasOpenAccess W4384993192 @default.
- W4384993192 hasPrimaryLocation W43849931921 @default.
- W4384993192 hasRelatedWork W1857151794 @default.
- W4384993192 hasRelatedWork W2077450584 @default.
- W4384993192 hasRelatedWork W2182097881 @default.
- W4384993192 hasRelatedWork W2247981111 @default.
- W4384993192 hasRelatedWork W2355236667 @default.
- W4384993192 hasRelatedWork W2365162783 @default.
- W4384993192 hasRelatedWork W2369222336 @default.
- W4384993192 hasRelatedWork W2737971973 @default.
- W4384993192 hasRelatedWork W292218982 @default.